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INTRODUCTION

Artificial Neural Networks (ANN) are suitable in modeling high-dimensional and highly nonlinear elements, such as
those found in the microwave arena.  In modeling microwave components, the learning data is obtained from a detailed
or “fine” model (typically an EM simulator), which is accurate but slow to evaluate.  This is aggravated because
simulations are needed for many combinations of input parameter values.  This is the main drawback of conventional
ANN modeling.  We use available equivalent circuits or “coarse” models to overcome this limitation.

In the Space Mapping (SM) based neuromodeling techniques an ANN is used to implement a suitable mapping from the
fine to the coarse input space.  The implicit knowledge in the coarse model not only allows us to decrease significantly
the number of learning points needed, but also to reduce the complexity of the ANN and to improve the generalization
performance.  We present novel realizations of SM based neuromodels of practical passive components using
commercial software.  An SM-based neuromodel of a microstrip right angle bend is developed using NeuroModeler [1],
and entered into HP ADS [2] as a library component through an ADS plug-in module.

SPACE MAPPING CONCEPT

SM establishes a link between proposed coarse and fine models, and directs the bulk of CPU intensive evaluations to
the coarse model, while preserving the accuracy of the fine model.  Let the vectors xc and xf represent the design
parameters of the coarse and fine models, respectively, and Rc(xc) and Rf (xf ) the corresponding model responses.  As
illustrated in Fig. 1, the aim of SM is to find an appropriate mapping P, valid in a parameter region of interest, from the
fine model parameter space xf to the coarse model parameter space xc

)( fc xPx = (1)

such that

)())(( fffc xRxPR ≈ (2)

Once the mapping is found, the coarse model can be used for fast and accurate simulations in the region of interest.
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Fig. 1.  Illustration of the aim of Space Mapping.
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SPACE-MAPPED NEUROMODELING

In the Space-Mapped Neuromodeling (SMN) approach an ANN implements the mapping from the fine to the coarse
parameter space.  It can be found by solving the optimization problem
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where w contains the internal parameters of the ANN, l is the number of learning samples, and ej is the error given by
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Fig. 2 illustrates the SMN concept. Once the ANN is trained, an SMN model for fast, accurate evaluations is available.

Including Frequency in the Neuromapping

Many empirical models are based on quasi-static analysis: they usually yield good accuracy over low frequencies.  We
overcome this limitation through a frequency-sensitive mapping from the fine to the coarse parameter space.  This is
realized by considering frequency as an extra input variable of the ANN that implements the mapping.  As illustrated in
Fig. 3a, in the Frequency Dependent Space-Mapped Neuromodeling (FDSMN) approach both coarse and fine models
are simulated at the same frequency, but the mapping from the coarse to the fine parameter space is dependent on the
frequency.  With a more comprehensive domain, the Frequency Space-Mapped Neuromodeling (FSMN) technique
establishes a mapping not only for the design parameters but also for the frequency variable, such that the coarse model
is simulated at a mapped frequency fc to match the fine model response.  This is realized by adding an extra output to
the ANN that implements the mapping, as shown in Fig. 3b.  Two additional techniques to efficiently create frequency-
sensitive neuromappings are proposed in [3].

SM BASED NEUROMODEL OF A MICROSTRIP RIGHT ANGLE BEND

Consider a microstrip right angle bend with conductor width W, substrate height H, substrate dielectric constant εr, and
operating frequency freq.  An FSMN model is developed for the region of interest shown in Table I.
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Fig. 2.  Space-Mapped Neuromodeling concept: (a) SM neuromodeling, (b) SMN model.
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Fig. 3.  Frequency-sensitive mappings: (a) Frequency Dependent Space-Mapped

  Neuromodeling (FDSMN), (b) Frequency Space-Mapped Neuromodeling (FSMN).



TABLE I
REGION OF INTEREST FOR THE MICROSTRIP RIGHT ANGLE BEND

Parameter Minimum value Maximum value

W 20 mil 30 mil
H 8 mil 16 mil
εr 8 10

freq 1 GHz 41 GHz

Sonnet’s em [4] is used as the fine model.  To generate the learning and testing data, the bend is parameterized using
the Geometry Capture [5] technique available in Empipe [6].  To evaluate the generalization performance of our
neuromodel, 50 random test base-points with uniform statistical distribution within the region of interest shown in Table
I are generated using a frequency step of 2 GHz (1050 test samples).  Following a star distribution for the learning
points [3], only 7 base points are used for learning (147 learning samples) since we have 3 design parameters.

Gupta’s model [7], consisting of a lumped LC equivalent circuit whose parameter values are given by analytical
functions of the physical quantities W, H and εr is taken as the “coarse” model.  Fig. 4a illustrates the FSMN
neuromodeling strategy for the microstrip bend, which was implemented using NeuroModeler as shown in Fig. 4b.
The FSMN model as implemented in NeuroModeler consists of a total of 6 layers. The first layer, shown in green color,
has the input parameters of the neuromapping (W, H, εr, and freq), which are scaled to ±1 to improve the numerical be-
havior during training.  The second layer from bottom to top corresponds to the hidden layer of the ANN implementing
the mapping (see Fig. 4b): optimal generalization performance is achieved with 8 hidden neurons with sigmoid non-
linearities.  The third layer is linear and contains the coarse design parameters xc and the mapped frequency fc before de-
scaling.  The fourth layer is added to simply de-scale the parameters.  Gupta’s formulas to calculate L and C are pro-
grammed as the internal analytical functions of the fifth hidden layer, using the built-in MultiSymbolicFixed function.
Finally, the output layer, shown in blue color, contains a simple internal circuit simulator that computes the real and im-
aginary parts of S11 and S21 for the lumped LC equivalent circuit. This layer uses the built-in CktSimulatorPS function.

Fig. 5 shows the learning and testing errors of the bend FSMN model after training using NeuroModeler.  Conjugate
Gradient and Quasi Newton built-in training methods are used.  The average and worst case learning errors are 0.43%
and 1.00%, while the average and worst-case testing errors are 1.04% and 10.94%.  Excellent generalization performan-
ce is achieved.  Plots in Fig. 5 were produced using the export-to-MatLab [8] capability available in Neuromodeler.
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Fig. 4.  Frequency Space-Mapped Neuromodel (FSMN) of microstrip right angle bend:
          (a) strategy, (b) implementation in NeuroModeler.
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Fig. 5.  Learning and testing errors of the FSMN model after training: (a) histogram of learning errors,

              (b) histogram of testing errors, (c) correlation to learning data, and (d) correlation to testing data.

The FSMN model of the right angle bend can now be used in HP ADS for fast and accurate simulations within the re-
gion of operation shown in Table I: it can be entered as a user-defined model through the plug-in module NeuroADS [1].

CONCLUSIONS

We present novel realizations of SM based neuromodels of practical passive components using commercial software.
Three powerful techniques to generate SM based neuromodels are described and illustrated: Space-Mapped Neuromo-
deling (SMN), Frequency-Dependent Space-Mapped Neuromodeling (FDSMN) and Frequency Space-Mapped Neuro-
modeling (FSMN).  These techniques exploit the vast set of empirical models already available, decrease the number of
fine model evaluations needed for training, improve generalization ability and reduce the complexity of the ANN
topology w.r.t. the classical neuromodeling approach.  An SM-based neuromodel of a microstrip right angle bend is
implemented using NeuroModeler, and entered into HP ADS as a library component through an ADS plug-in module.
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