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DESIGN OF A BALANCED MICROSTRIP LINE FILTER

J.W. Bandler, M.H. Bakr, C.E. Falt and N. Georgieva 

Abstract

In this work we discuss the design of a Balanced Microstrip Filter (BMF).  This filter is operated

in the odd mode to reduce radiation losses.  The filter is simulated through Sonnet’s em.  This design is

time-intensive.  We utilized the efficient Hybrid Aggressive Space Mapping (HASM) algorithm.  A

coarse model that uses empirical models of coupled microstrip lines and Walker’s formulas is utilized.

The algorithm managed to align the optimal coarse model response and the fine model response.

However, the final design is not as good as the one obtained by direct optimization.  We carried out a

convergence analysis of the simulator behavior.  We show that simulator inaccuracy is the main reason for

the HASM algorithm to stop prematurely.
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I. INTRODUCTION

The design of a balanced microstrip filter (BMF) using the Hybrid Aggressive Space Mapping

(HASM) algorithm [1, 2] is presented in this report.  The design is based on a structure proposed by Chris

Falt in 1996 [3] (see Fig. 1).  It alleviates one of the major shortcomings of microstrip filters, namely,

their excessive radiation loss at frequencies higher than 20 GHz.  It uses open-end coupled microstrip line

sections operating in odd mode.  Due to the odd mode, the field is very much concentrated in the slot

between the microstrip lines of each balanced section, thus significantly restricting the excitation of

surface waves or the radiation from the open ends of the microstrip coupled lines.

In a previous work [4], direct optimization of the BMF was carried out.  It has been already

established that the design of the BMF is very troublesome due to three main factors.  First, the empirical

formulas used to build the equivalent circuit are not accurate at the frequency band of operation 27 GHz

≤ f ≤29 GHz.  As a result, the equivalent circuit can be used only for approximate evaluation [4].

Second, the structure is very sensitive to changes of all optimized lengths lin, ls1, ls2, lclb and lcln and a very

fine mesh size <0.5 mil along the x-axis (see Fig. 1) is recommended for the fine model to be trusted

within an error of 10%. Unfortunately, this would require several hours of simulation time per frequency

sweep, which would make a direct optimization impractical.  Third, the optimization problem is

additionally complicated by multiple minima.

The HASM algorithm offers an opportunity to fully automate the otherwise extremely

cumbersome conventional design procedure.  It requires the existence of a coarse model for the circuit

under consideration.  Here, we utilize the equivalent circuit developed in [4], which modeled the coupling

between microstrip lines through the empirical formulas suggested by Walker [5, 6].  This model is not

accurate but was used in [4] to obtain a reasonable starting point for the direct optimization of a fine

electromagnetic (EM) model.  On the other hand, it is an excellent candidate for a Space Mapping coarse

model [1, 2].

The HASM algorithm managed to successfully align the two responses.  However, the final

design slightly violates the design specifications.
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The difficulties faced in the direct optimization [4] and the premature termination of the HASM

algorithm prompted us to carry out a convergence analysis of the EM simulator.  The results of the

convergence analysis are discussed later in this report.  They confirm the recommendation made in [4] of

setting a fine mesh size <0.5 mil along the x-axis for a reliable calculation of the filter response and its

derivatives with respect to the optimized parameters.

We start by describing the filter structure and design specifications in Section II.  The utilized

coarse model is then described in Section III.  Also the design of this coarse model is discussed.  The

HASM optimization of the balanced filter is discussed in Section IV.  The convergence analysis of the

simulator is discussed in Section V.  Finally, the conclusions are given in Section VI.

II. STRUCTURE DESCRIPTION AND DESIGN SPECIFICATIONS

The BMF is shown in Fig. 1.  This figure shows that the filter is characterized by eight

parameters: w, s0, sc, lin,  ls1, ls2, lclb and lcln.  We keep w, s0 and sc fixed at 5.0 mils each.  The design

specifications for this problem are

|S21| ≥ 0.987 (-0.108 dB) for 27.625 GHz ≤ f ≤ 28.375 GHz                          (1)

and

S21| ≤ 0.25 for  f ≤ 27.2 GHz and f ≥ 28.8 GHz                                 (2)

The relative bandwidth for these design constraints is 2.68 %.  The port impedance at both differential

ports is Z0=100 Ω .  The ports of the filter are operated in the odd mode (balanced excitation).  The main

advantage of the balanced filters is the reduction of radiation losses at millimeter wavelengths.  A balun

structure may be used to connect the ports of the balanced filter to the line feed to provide the necessary

phase shift at the ports.  The substrate has a height of h=10 mil and a relative dielectric constant of εr=2.2.

III. THE COARSE MODEL

The coarse model is an equivalent circuit, which uses the built-in coupled microstrip-line model
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of OSA90/hope [7] and Walker’s formulas [5, 6] to represent the four-line sections of the filter.  The

netlist file for this model is given in Appendix A.  To understand the model better, the following

guidelines can be given.  The filter includes four four-line sections, which are two by two identical with

lengths ls1 and ls2, respectively.  Besides, it includes three coupled microstrip-line sections.  Two of the

microstrip-coupled lines are identical with a length of lclb, and the other one has a length of lcln (see Fig.

1).  The two four-line sections are defined as a subcircuits in the netlist file: c_lines_1 and c_lines_2.  The

difference between them is only in their length.  An example geometry of a four-line microstrip section is

given in Fig. 2.  The corresponding equivalent circuit is given in Fig. 3.

It is important to mention that this equivalent circuit is relevant to the odd-mode case, where

push-pull feed is applied at ports 1-4, 2-3, 5-8 and at 6-7.  Thus, the above equivalent circuit represents

two coupled coupled-line sections operating in an odd mode.  Note that only the inner coupling is

represented via Walker’s formulas, while the outer couplings are represented using the built-in microstrip

coupled line model in OSA90/hope.  This element notation is MSCL in OSA90/hope library.

The inductances Lm [H] and the capacitances Cm [F] are calculated by making use of the

inductance per unit length Lm1 [H/m] and the capacitance per unit length Cm1 [F/m] of Walker’s formulas

[5, 6].

III. OPTIMIZATION OF THE COARSE MODEL

The first step in the HASM algorithm is to obtain an optimal design for the fast and less accurate

coarse model.  The coarse model is optimized to satisfy the design constraints (1) and (2).  The starting

point for optimization is given in Table I.  The corresponding coarse model response is shown in Fig. 4.

The optimal coarse model design is given in Table I.  The corresponding response is shown in

Fig. 5.  This design satisfies the optimization specifications with a maximum error of –0.0050606.  The

solution is not unique and it is established that at least two local minima represent good designs

(exceeding the design specifications).
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IV. HASM OPTIMIZATION

The fine model is the filter simulated by Sonnet’s em [8] through Empipe [7].  The filter is first

parameterized.  The nominal geometry file is shown in Fig. 6.  The nominal and perturbed values of the

fine model parameters utilized in the parameterization process are given in Fig. 7.

Note that the mesh size alongside the filter (x axis) is 0.5 mil or 0.0127 mm.  The choice of such a

mesh size was dictated by the sensitivity of the responses with respect to the open-end microstrip-section

lengths.

To make the design time-efficient we disabled the interpolation feature available in Empipe [7].

The starting point for the HASM algorithm is the optimal coarse model design snapped to the nearest on-

grid point.  This point is given in Table II.  The corresponding fine model responses are given in Figs. 8, 9

and 10.  These figures show that the significant misalignment between the optimal coarse model response

and the fine model response.

Due to the sensitivity of the responses with respect to the optimizable parameters, the points used

for the multi-point parameter extraction are within a fixed region that is smaller in size than the trust

region utilized.  The first phase of the HASM algorithm executed successfully two iterations that required

7 fine model simulations.  The design at the end of the first phase x′em  is given in Table II.  The

corresponding responses are shown in Figs. 11, 12 and 13.  These figures show that the first phase

managed to shift the fine model response to the proper frequency band.  The locations of the poles of the

response are also close to their expected values.  However, there is still significant reflection in the

passband.

The mapping established in the first phase is utilized by the algorithm to get an estimate for the

Jacobian of the fine model response.  The algorithm then switches to the second phase which executed 10

successful iterations that required 13 fine model simulations.  The design at the end of the second phase

( x ′′em ) is given in Table II.  The corresponding responses are shown in Figs. 14, 15 and 16.  This design
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has a better match to the optimal coarse model response.  However, the design constraints are slightly

violated.

The HASM algorithm defaults to minimax optimization to ensure optimality of the design.  The

starting point for the minimax optimizer is x ′′em .  The solution x*
em  is given in Table II.  The

corresponding responses are given in Figs. 17, 18 and 19.  This design does not satisfy the design

specifications.  Minimax optimization reached a local minimum that is different from that reported in [4].

V. CONVERGENCE ANALYSIS

The difficulty encountered in the direct optimization [4] and the premature termination of the

HASM algorithm prompted us to investigate the accuracy of the simulator.  The size of the grid along the

x-direction is made 0.25 mils while keeping the grid size along the y-direction constant.  The S parameters

at the on-grid point x ′′em  were obtained for the case ∆x=0.25 mils.  We then evaluated the complex

difference between the S parameters at the on-grid point x ′′em  obtained using ∆x=0.25 mils and ∆x=0.5

mils.  The modulus of this complex difference is shown in Fig. 20 for a complete frequency sweep.  This

figure shows that the modulus of the change in S21 can go up to 0.065.  We believe that this high value of

∆S is the basic reason for the difficulty facing direct optimization (many local minima).  Also, we

believe it is the basic reason for the premature termination of the HASM algorithm.

We investigated the effect of the inaccuracy of the simulated responses on the derivatives of the

objective function )()(
2xRxRL *

ososemem −=  with respect to the two parameters lin  and ls1.  We chose to

make this comparison at the on-grid point x ′′em .  The gradient is evaluated using both forward and

backward differences for the cases ∆x=0.5 mils and ∆x=0.25 mils.  For the case ∆x=0.5 mils we have
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and for ∆x=0.25 mils we have
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Note that in (3) there is a difference in the sign and a significant difference in the magnitude (a factor of

approximately 18.93) between the forward and the backward derivative with respect to the parameter ls1.

This signals unsuitable grid size due to high sensitivity with respect to this parameter.  The change of sign

may cause an optimization algorithm to assume that this point is a local minimum.

In (4) we notice that there is no difference in sign between the forward and backward derivative

with respect to ls1.  However, there is still some difference in the magnitude.  The derivatives in (4) show

that the point x ′′em can not be mistaken as a local minimum using the more accurate results obtained using

∆x=0.25 mils.  The derivatives with respect to lin are consistent in both (3) and (4).

We also investigated the accuracy of the design obtained through direct optimization in [4].  Figs.

21 and 22 show the response simulated using ∆x=0.5 mils and ∆x=0.25 mils, respectively.  It is clear from

these figures that the design specifications are satisfied in both cases.  The complex difference between

the S parameters for this design using ∆x=0.5 mils and ∆x=0.25 mils is calculated.  Its modulus is shown

in Fig. 23.  It is clear that |∆S11| is small in the passband and this made the design still satisfy the

specifications using the refined mesh.

The previous discussion recommends that a finer grid size (<0.5 mils) in the x-direction be used.

However, using such a fine grid size makes the optimization process formidable due to the intensive time

requirements.
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VI. CONCLUSIONS

In this work we discussed the Hybrid Aggressive Space Mapping (HASM) optimization of a

balanced microstrip filter.  The coarse model utilizes empirical models for the coupled microstrip lines

and Walker’s formulas.  The fine model utilizes Sonnet’s em.  The algorithm managed to considerably

align the coarse and fine model responses.  However, the final design still violates the design

specifications.  The premature termination of the algorithm and the difficulties reported in direct

optimization prompted us to investigate the accuracy of the simulator.  We showed that there is a

considerable change in the S-parameters when a finer grid is utilized.  The many local minima noticed

during direct optimization and the premature termination of the HASM algorithm are mainly attributed to

the accuracy of the simulator.  The design is currently being refined by utilizing Sonnet’s em simulation

with a very fine mesh, and the HASM algorithm.
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TABLE I
THE INITIAL AND OPTIMAL DESIGN OF

THE COARSE MODEL

Parameter Initial value Optimal value

lin

ls1

ls2

lclb

lcln

50
50
7.2
100
147

77.1561
42.5598
8.81322
103.850
146.651

All values are in mils

TABLE II
THE OPTIMAL COARSE MODEL DESIGN AND THE DESIGNS

OBTAINED DURING DIFFERENT PHASES OF THE HASM ALGORITHM

Parameter x*
os  (snapped) x′em x ′′em x*

em

lin 77.0 65.5 54.0 49.1348
ls1 42.5 52.5 53.5 50.5811
ls2 9.0 7.0 7.0 7.0000
lclb 104.0 97.0 96.5 99.5590
lcln 147.0 147.0 147.0 147.493

All values are in mils



11

Fig. 1.  The balanced microstrip filter.

Fig. 2.  Four coupled microstrip-line section.

Fig. 3. Equivalent circuit used as a very coarse approximation of a section of two coupled coupled-
microstrip lines.
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Fig. 4.  The coarse model response at the starting point.

Fig. 5.  The optimal coarse model response.
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Fig. 6.  The nominal geometry file used for the geometry capture of the fine model.

Fig. 7.  Nominal and perturbed values of the optimized parameters in the fine model.
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Fig. 8. The optimal coarse model response ( ) (both S11 and S21) and the initial fine model
response (S21 (ο) and S11 (∆)).

Fig. 9. The optimal coarse model response ( ) and the initial fine model response (ο).

27.2 27.4 27.6 27.8 28.0 28.2 28.4 28.6 28.8

frequency (GHz)

-30

-25

-20

-15

-10

 -5

0

   
   

   
 

S 2
1

dB

27.2 27.4 27.6 27.8 28.0 28.2 28.4 28.6 28.8

frequency (GHz)

-60

-50

-40

-30

-20

-10

0

 S
21

 d
B

 a
nd

 
S 1

1
dB



15

Fig. 10.  The optimal coarse model response ( ) and the initial fine model response (∆).

Fig. 11. The optimal coarse model response ( ) (both S11 and S21) and the fine model response at
the end of the first phase (S21 (ο) and S11 (∆)).
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Fig. 12. The optimal coarse model response ( ) and the fine model response (ο) at the end of the first
phase.

Fig. 13. The optimal coarse model response ( ) and the fine model response (∆) at the end of the first
phase.
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Fig. 14. The optimal coarse model response ( ) (both S11 and S21) and the fine model response at
the end of the second phase (S21 (ο) and S11 (∆)).

Fig. 15. The optimal coarse model response ( ) and the fine model response (ο) at the end of the
second phase.
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Fig. 16. The optimal coarse model response ( ) and the fine model response (∆) at the end of the
second phase.

Fig. 17. The optimal coarse model response ( ) (both S11 and S21) and the optimal fine model
response (S21 (ο) and S11 (∆)).
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Fig. 18.  The optimal coarse model response ( ) and the optimal fine model response (ο).

Fig. 19.  The optimal coarse model response ( ) and the optimal fine model response (∆).
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Fig. 20. The modulus of the difference of S21 (ο) and S11 ( ) at the point x ′′em obtained using grid sizes in
the x-direction of 0.5 mils and 0.25 mils.
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Fig. 21. The optimal coarse model response ( ) (both S11 and S21) and the optimal fine model
response (S21 (ο) and S11 (∆)) obtained using a grid size of 0.5 mils in the x-direction.
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Fig. 22. The optimal coarse model response ( ) (both S11 and S21) and the optimal fine model
response (S21 (ο) and S11 (∆)) obtained using a grid size of 0.25 mils in the x-direction.

Fig. 23. The modulus of the difference of S21 (ο) and S11 ( ) at the minimax optimal design obtained
using grid sizes in the x-direction of 0.5 mils and 0.25 mils.
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APPENDIX A

! Example  nortel_filter.ckt
!  Wed Apr 21 14:50:07 1999. Minimax Optimizer. 24 Iterations. 00:00:52 CPU.
!  Wed Apr 21 14:53:58 1999. Minimax Optimizer. 22 Iterations. 00:00:40 CPU.
!  Wed Apr 21 15:06:29 1999. Minimax Optimizer. 20 Iterations. 00:00:37 CPU.

Expression
MILMM=0.0254;         ! mil -> mm
VL=2.99792458;        ! velocity of light,*1e+11 mm/s
MU0=4*PI*1e-10;       ! H/mm
EPS0=1/(4*PI*(VL^2)); ! pF/mm

fmin=(27*1GHz);fmax=(29*1GHz);fstep=(0.005*1GHz);

ER=2.2;
WW=5;HSUB=10; ! mils

S0=5; ! mil
SC=5;
SCL=S0+2*(SC+WW);
D=S0+WW;

Lin: ?77.1561?;
LS1: ?42.5598?;
LS2: ?8.81322?;
LCLB: ?103.85?;
LCLN: ?146.651?;

WS=(WW*1mil);HS=(HSUB*1mil);
QLS1=(0.25*LS1*1mil);
QLS2=(0.25*LS2*1mil);
HLS1=(0.5*LS1*1mil);
HLS2=(0.5*LS2*1mil);

! effective dielectric constant, infinitesimally thin strip, non-dispersive
WOH=WW/HSUB;
A=1+LOG((WOH^4+(WOH/52)^2)/(WOH^4+0.432))/49+LOG(1+(WOH/18.1)^3)/18.7;
B=0.564*((ER-0.9)/(ER+3))^0.053;
EREF=0.5*(ER+1)+0.5*(ER-1)*((1+10/WOH)^(-A*B));

! mutual capacitance/unit length
Z0: if (WOH <= 1) (60*LOG(8/WOH+WOH/4))

                    else (120*PI/(WOH+2.42-0.44/WOH+(1-1/WOH)^6));
KL=120*PI/(Z0*WOH);
KC=KL*(EREF/ER);

CM0=(EPS0*ER/(4*PI))*KC*KL*(WOH^2)*LOG(1+(2*HSUB/S0)^2); ! pF/mm
CMC=(EPS0*ER/(4*PI))*KC*KL*(WOH^2)*LOG(1+(2*HSUB/SC)^2); ! pF/mm

C0S1=CM0*(HLS1*MILMM)*1e-3; ! nF -> HLS1
C0S2=CM0*(HLS2*MILMM)*1e-3; ! nF -> HLS2
CCS1=CMC*(HLS1*MILMM)*1e-3; ! nF -> HLS1
CCS2=CMC*(HLS2*MILMM)*1e-3; ! nF -> HLS2

! mutual inductance/unit length
LM0=0.1*LOG(1+(2*HSUB/D)^2);  ! nH/mm
LM1=LM0*(HLS1*MILMM);         ! nH -> HLS1
LM2=LM0*(HLS2*MILMM);         ! nH => HLS2
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End

Model
SUBCIRCUIT c_clines_1 1 2 3 4 5 6 7 8 0 {

MSUB EPSR=ER H=HS;
IND 2 21 L=(-LM1*1nH);
MSCL 1 21 10 9 W=WS L=QLS1 S=(SC*1mil);
MSCL 9 10 14 13 W=WS L=QLS1 S=(SC*1mil);
MSCL 13 14 18 17 W=WS L=QLS1 S=(SC*1mil);
MSCL 17 18 23 8 W=WS L=QLS1 S=(SC*1mil);
IND 7 23 L=(-LM1*1nH);

IND 3 22 L=(-LM1*1nH);
MSCL 22 4 12 11 W=WS L=QLS1 S=(SC*1mil);
MSCL 11 12 16 15 W=WS L=QLS1 S=(SC*1mil);
MSCL 15 16 20 19 W=WS L=QLS1 S=(SC*1mil);
MSCL 19 20 5 24 W=WS L=QLS1 S=(SC*1mil);
IND 6 24 L=(-LM1*1nH);

CAP 10 11 C=(C0S1*1nF);
CAP 10 0 C=(-C0S1*1nF);
CAP 11 0 C=(-C0S1*1nF);
CAP 18 19 C=(C0S1*1nF);
CAP 18 0 C=(-C0S1*1nF);
CAP 19 0 C=(-C0S1*1nF);

};
SUBCIRCUIT c_clines_2 1 2 3 4 5 6 7 8 0 {

MSUB EPSR=ER H=HS;
IND 2 21 L=(-LM2*1nH);
MSCL 1 21 10 9 W=WS L=QLS2 S=(SC*1mil);
MSCL 9 10 14 13 W=WS L=QLS2 S=(SC*1mil);
MSCL 13 14 18 17 W=WS L=QLS2 S=(SC*1mil);
MSCL 17 18 23 8 W=WS L=QLS2 S=(SC*1mil);
IND 7 23 L=(-LM2*1nH);

IND 3 22 L=(-LM2*1nH);
MSCL 22 4 12 11 W=WS L=QLS2 S=(SC*1mil);
MSCL 11 12 16 15 W=WS L=QLS2 S=(SC*1mil);
MSCL 15 16 20 19 W=WS L=QLS2 S=(SC*1mil);
MSCL 19 20 5 24 W=WS L=QLS2 S=(SC*1mil);
IND 6 24 L=(-LM2*1nH);

CAP 10 11 C=(C0S2*1nF);
CAP 10 0 C=(-C0S2*1nF);
CAP 11 0 C=(-C0S2*1nF);
CAP 18 19 C=(C0S2*1nF);
CAP 18 0 C=(-C0S2*1nF);
CAP 19 0 C=(-C0S2*1nF);

};
Lop=0.001*1mil;

   MSUB EPSR=ER H=HS;
   MSCL 1 2 5 4 W=WS L=(Lin*1mil) S=(S0*1mil);

MOPEN 3 W=WS L=Lop;
MOPEN 6 W=WS l=Lop;
c_clines_1 3 4 5 6 7 8 9 10;
MOPEN 8 W=WS L=Lop;
MOPEN 9 W=WS L=Lop;
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MSCL 10 7 14 11 W=WS L=(LCLB*1mil) S=(SCL*1mil);
MOPEN 12 W=WS L=Lop;
MOPEN 13 W=WS L=Lop;
c_clines_2 11 12 13 14 15 16 17 18;
MOPEN 15 W=WS L=Lop;
MOPEN 18 W=WS L=Lop;
MSCL 17 16 21 20 W=WS L=(LCLN*1mil) S=(S0*1mil);
MOPEN 19 W=WS L=Lop;
MOPEN 22 W=WS L=Lop;
c_clines_2 19 20 21 22 23 24 25 26;
MOPEN 24 W=WS L=Lop;
MOPEN 25 W=WS L=Lop;
MSCL 26 23 30 27 W=WS L=(LCLB*1mil) S=(SCL*1mil);
MOPEN 28 W=WS L=Lop;
MOPEN 29 W=WS L=Lop;
c_clines_1 27 28 29 30 31 32 33 34;
MOPEN 31 W=WS L=Lop;
MOPEN 34 W=WS L=Lop;
MSCL 33 32 36 35 W=WS L=(Lin*1mil) S=(S0*1mil);

PORT 1 2 R=100 X=0;
PORT 35 36 R=100 X=0;

CIRCUIT;

   MS21_DB: 20 * LOG10(MS21);
MS11_DB: 20 * LOG10(MS11);

end

Sweep
   AC: FREQ: 27.2GHz 27.4GHz

     from 27.625GHz to 28.375GHz step=0.0375GHz
     28.6GHz 28.8GHz
     MS21 MS MS21_dB MS11_dB Lin LS1

       {Xsweep Title="Balanced filter, coarse model"
        Y=MS21.white Y_title="|S21|" Xmin=27.2 Xmax=28.8 Ymax=1 ! NXticks=15
        SPEC=(at 27.2, < 0.25).yellow &
             (from 27.625 to 28.375, > 0.987).yellow &
             (at 28.8, < 0.25).yellow};
end

Spec
   AC: FREQ: from 27.625GHz to 28.375GHz step=0.0375GHz MS21 > 0.987;
   AC: FREQ: 27.2GHz MS21 < 0.25;
   AC: FREQ: 28.8GHz MS21 < 0.25;
end

Control
Allow_Neg_Parameters

end

Report
$%13.9f$ R=[ ${ $FREQ$  $MS21$ }$ ];
end


