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 A GENERALIZED SPACE MAPPING TABLEAU APPROACH TO DEVICE MODELING

John W. Bandler, Fellow, IEEE, N. Georgieva, Member, IEEE, Mostafa A. Ismail, Student Member,
IEEE, José E. Rayas-Sánchez, Senior Member, IEEE, and Qi-Jun Zhang, Senior Member, IEEE

Abstract  A comprehensive framework to engineering device modeling which we call Generalized Space

Mapping (GSM) is introduced.  GSM permits many different practical implementations.  As a result the

accuracy of available empirical models of microwave devices can be significantly enhanced.  We present

three fundamental illustrations: a basic Space Mapping Super Model (SMSM), Frequency-Space

Mapping Super Model (FSMSM) and Multiple Space Mapping (MSM).  Two variations of MSM are

presented: MSM for Device Responses (MSMDR) and MSM for Frequency Intervals (MSMFI).  We also

present novel criteria to discriminate between coarse models of the same device.  The SMSM, FSMSM

and MSM concepts have been verified on several modeling problems, typically utilizing a few relevant

full-wave EM simulations.  This paper presents four examples, a microstrip line, a microstrip right angle

bend, a microstrip step junction and a microstrip shaped T-junction, yielding remarkable improvement

within regions of interest.

I.  INTRODUCTION

We generalize the Space Mapping (SM) [1], the Frequency Space Mapping (FSM) [2] and the

Multiple Space Mapping (MSM) [3] concepts to build a new engineering device modeling framework.
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This framework is flexible enough to permit a number of implementable special cases.  The important

observation that we make is that the methodology closely follows sound engineering design practice.  Our

contribution is a mathematical formulation suitable for device modeling and a clear practical

interpretation.  We refer to the concept generically as the Generalized Space Mapping (GSM) concept.

The mathematical formulation of the GSM framework is not complicated.  It is expected to be

useful in assisting designers to evaluate the accuracy of empirical models and/or to discriminate between

them.  Intuitively meaningful quantitative measures of model accuracy can be developed through careful

interpretations of GSM.

Significant enhancement of the accuracy of available empirical models of microwave devices can

be realized.  Three fundamental cases are presented: Space Mapping Super Model (SMSM) which maps

designable device parameters, a basic Frequency-Space Mapping Super Model (FSMSM) which maps the

frequency variable as well as the designable device parameters and Multiple Space Mapping (MSM).  We

present two variations of MSM: MSM for Device Responses (MSMDR) and MSM for Frequency

Intervals (MSMFI).  In MSMDR we divide the set of device responses into a number of sub-responses

and establish a separate mapping for each sub-response.  In MSMFI we divide the frequency range of

interest into a number of intervals and establish a separate mapping for each interval.  Two algorithms to

implement MSMDR and MSMFI are also presented.

Two model types are usually defined in the SM process [1]: a “coarse” model, typically an

empirical model, and a “fine” model, typically a full-wave EM simulator.  Empirical models of

microwave devices behave well in certain parameter and frequency regions.  They are computationally

very fast and are preferred for initial design purposes over accurate but CPU intensive full-wave EM

simulators.

The basic SMSM, FSMSM and MSM concepts have been validated on a number of modeling

problems, typically utilizing a few relevant full-wave EM simulations.  This paper presents four

illustrations, a microstrip line, a microstrip right angle bend, a microstrip step junction and a microstrip

shaped T-junction, yielding remarkable improvement within the regions of interest.
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II.  THE GSM CONCEPT

Consider a microwave device with physical parameters represented by an n-dimensional vector

fx .  In general, the response ),( ?fc xR  produced by the coarse model deviates from the response

),( ?ff xR  produced by an EM simulator, where ?  is the frequency variable.  Therefore, the aim is to

find a mapping from the fine model parameters and the frequency variable to a new set of parameters and

a new frequency variable so that the responses of the two models match.  Mapping the space parameters

was introduced by Bandler et al. [1] and mapping the frequency variable was introduced later in [2].  The

mapped coarse model parameters are represented by an n-dimensional vector cx and the mapped

frequency variable is represented by c? .  We call this scheme Frequency-Space Mapping Super Model

(FSMSM) as illustrated in Fig. 1.  A special case of FSMSM is to map only the fine model parameters

and leave the frequency variable unchanged.  We call this the Space Mapping Super Model (SMSM), as

illustrated in Fig. 2.  Once FSMSM or SMSM are established the enhanced coarse model (see Fig. 3) can

be utilized for analysis or design purposes.  We will compare the FSMSM and SMSM in one of the

examples.

The mapping relating the fine model parameters and frequency to the coarse model parameters

and frequency is given by

),(][ ?? f
T

cc xPx = (1)

Or, in matrix form, assuming a linear mapping,
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where },,{ s,d,, tsBc  are the parameters characterizing the mapping P .  The constant vectors c, s, t are

n-dimensional, B is an n x n matrix and sd,  are scalar.  In (2) we notice that we map the inverse of the

frequency (which is proportional to the wavelength) instead of the frequency itself.  This has produced

better results in all the models we considered than mapping the frequency directly.  It can be also justified
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by the fact that in most microwave structures shrinking the structure would lead to a shift of its spectral

characteristics to higher frequencies (shorter wavelengths).

The mapping parameters in (2) can be evaluated by solving the optimization problem

TT
N

TT

sd
][min

,,,
21 eee

 tsB,c,
L (3)

subject to suitable constraints, where  is a suitable norm, N is the total number of fine model

simulations and ke  is an error vector given by

,),(),( cccjiffk ?? xRxRe −= (4a)

),(][ jif
T

cc ?? xPx = (4b)

with

pBi ,,1 L= (5a)

pFj ,,1 L= (5b)

pFijk )1( −+= (5c)

where Bp is the number of base points and Fp is the number of frequency points per frequency sweep.  The

total number of fine model simulations is N = Bp Fp.  The constraints we impose on the mapping

parameters are that the mapping parameters should be as close as possible to the parameters

corresponding to a unit mapping fc xx =  and ?? c =  which corresponds to {c = 0, B = I, s = 0, ,0=d

0,=t 1=s }.  These constraints are justified by the fact that the coarse model carries considerable

physical characteristics of the fine model.  Therefore, the optimum values of the mapping parameters

should not severely deviate from the values corresponding to a unit mapping.  To include these

constraints, the objective function in (3) is modified as follows

TT
n

TTTTTT
N

TT ds
sd

]????[min
,,,

2121 bbbtsceee
 tsB,c,

LL (6)
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where the error vectors Ne,e,e ,21 L  are defined by (4a), the vectors nbbb ?,,?,? 21 L  are the

columns of the matrix B?  given by

IBB −=? (7)

and s? is defined by

1−=∆ ss (8)

The numerical values of the mapping parameters in (2) can give the designer physically-based

intuitive information on the entire modeling process.  The deviation of the optimal values of these

parameters from those corresponding to a unit mapping indicates the degree of proximity between the

coarse model and the fine model.  This important feature can be used to compare between two coarse

models.  The coarse model with less deviation should be more accurate.  Let ß  be the deviation of the

mapping parameters from the parameters corresponding to a unit mapping, that is

TT
n

TTTTT dsß ][ 21 ∆∆∆∆= bbbtsc L (9)

where nbbb ?,,?,? 21 L  and s? are defined by (7) and (8), respectively.  Therefore, based on the value

of ß  we can discriminate between various coarse models of the same device.  The smaller the value of ß

the closer the coarse model is to the fine model.  We will demonstrate this feature in one of the examples.

III.  MULTIPLE SPACE MAPPING (MSM)

Multiple Space Mapping (MSM) was introduced in [3].  We present two variations of MSM for

device modeling.  We refer to them as MSM for Device Responses (MSMDR) and MSM for Frequency

Intervals (MSMFI).  In MSMDR we divide the device response vector R (in both models) into L subsets

of responses (or vectors) Lii ...,2,1,, =R .  An individual mapping is established for each subset of

responses as illustrated in Fig. 4.  In MSMFI we divide the frequency range of interest into M intervals

and evaluate a separate mapping for each interval as illustrated in Fig. 5 (the switch in Fig. 5 is controlled

by the frequency variable).  The important questions are how we divide these responses into a set of sub-

responses and how we divide the frequency range into a set of intervals.  There was no guide in [3]

regarding the answer to these questions.  The following algorithms implement MSMDR and MSMFI.
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MSMDR Algorithm

MSMDR algorithm divides the device responses in an iterative manner while establishing a

separate mapping for each set of sub-responses.  First it establishes a mapping targeting all responses.

Then it assigns this mapping to the set of sub-responses satisfying a specified accuracy.  It repeats the

previous steps recursively on the remaining responses (which do not satisfy the required accuracy).  The

algorithm stops when all responses are exhausted.  The following steps summarize the algorithm

implementing MSMDR:

Step 1 Initialize i=1 and let R  contain all responses.

Step 2 Establish a mapping iP , by solving (6), targeting all responses in R .

Step 3 Assign the mapping iP  to the set of sub-responses RR ⊂i  that satisfies the error criteria

eicif ≤− RR , where e  is a small positive number and icif RR ,  are the fine and the coarse

model sub-responses, respectively.

Step 4 Replace R  by RR −i  and increment i.

Step 5 If R  is not empty go to step 2, otherwise stop.

We have to emphasize that MSMDR needs the same number of fine model simulations (EM

simulations) required to establish a single mapping targeting all responses.  However, it can dramatically

improve the coarse models as we will see in the examples.

MSMFI Algorithm

MSMFI algorithm is similar to MSMDR algorithm.  First it establishes a mapping targeting all

set of responses R in the whole frequency range maxmin ωωω ≤≤ .  Then it assigns this mapping to the

frequency interval 1min ωωω ≤≤  (where 1ω  belongs to the frequency range of interest) in which the set

of responses R satisfies a certain specified accuracy.  It repeats the previous steps recursively until

covering the whole frequency range.  The following steps summarize the MSMFI algorithm:

Step 1 Initialize i=1 and let the frequency interval ],[ maxmin ??O = .
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Step 2 Establish a mapping iP , by solving (6), in the frequency range defined by O .

Step 3 Assign the mapping iP  to the frequency interval OOi ⊂  in which the error criteria

ecf ≤− RR  is satisfied, where e  is a small positive number and cf RR ,  are the fine and the

coarse model responses, respectively.

Step 4 Replace O  by iOO −  and increment i.

Step 5 If O  is not empty go to step 2, otherwise stop.

We have to emphasize that MSMFI costs the same number of fine model simulations (EM

simulations) required to establish a single mapping for the whole frequency range.

IV.  IMPLEMENTATION OF GSM

The optimization problem in (6) is solved using Huber optimizer [4] implemented in

OSA90/hope [5].  The norm used in (6) is also a Huber norm [4].  Huber norm of an error vector

T
leee ][ 21 L=e  is defined by [4]

)()(
1

i

l

i
e?H ∑

=
=e (10)
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where α  is a positive constant.  The objective function in (6) is the Huber norm of the vector e given by

TT
n

TTTTTT
N

TT ds ]????[ 2121 bbbtsceeee LL= (12)

The Huber norm is robust against large errors and flexible with respect to small variations in the data [4].

The set of base points },...,2,1,{ pif Bi =x  in the region of interest is taken as in [6] (see Fig. 6).

According to this distribution the number of base points is 2n+1 where n is the number of fine model

parameters.  The starting values for the mapping parameters },,{ s,d,, tsBc  are {0, I, 0, 0, 0, 1} which

correspond to the unit mapping fc xx =  and ?? c = .  The software tools needed for the implementation
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of GSM are an optimizer (Huber optimizer [4] is recommended), a suitable circuit simulator which can

handle simple matrix operations, and a suitable full-wave EM simulator.

V.  EXAMPLES

We present four typical modeling problems: a microstrip line, a microstrip right angle bend, a

microstrip step junction and a microstrip shaped T-junction.  To display the results in a compact way we

define the error Eij as the modulus of the difference between the scattering parameter f
ijS  computed by the

fine model and the scattering parameter c
ijS  computed by the coarse model

22 ])Im[](Im[])Re[](Re[ c
ij

f
ij

c
ij

f
ij

c
ij

f
ijij SSSSSSE −+−=−= (13)

where i=1,2,..., M and j=1, 2,..., M (M is the number of ports of the microwave device).  The error Eij is a

measure of both the error in the magnitude and the phase of the scattering parameters c
ijS .  We refer to Eij

simply as the error in the scattering parameter Sij.

Microstrip Line

In this example we compare between SMSM and FSMSM.  Both modeling approaches are used

to enhance the transmission line model of a microstrip line.  The fine model is analyzed by Sonnet’s em

simulator [7] and the “coarse” model is a built-in element of OSA90/hope [5].  The fine and coarse

models are shown in Fig 7.  The structure in Fig. 7(a) was parameterized using Geometry Capture [8]

implemented in EmpipeTM [9].  The fine and coarse model parameters are given by fx = [L W H rε ]
T
,

cx = [Lc Wc Hc rcε ]
T.  The region of interest is given in Table I.  The frequency range is 20 GHz to 30

GHz with a step of 2 GHz (Fp = 6).  The characteristic impedance Z0 of the transmission line is computed

in terms of the width cW , the substrate height cH  and the relative dielectric constant rcε  using the quasi-

static model in [10].  Only 9 points (Bp = 9) in the region of interest were used to develop SMSM or

FSMSM.  We developed SMSM and FSMSM for the microstrip line and the corresponding mapping

parameters for each case are given in Table II.  Notice that in case of SMSM the mapping parameters

s,d,, ts are fixed and in the case of FSMSM the computed value of t is 0 which means that the coarse
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model frequency does not depend on the fine model parameters (it only depends on the fine model

frequency).  The microstrip transmission line SMSM and FSMSM were tested at 50 uniformly distributed

random points in the region of interest.  The error in S21 defined by (13) for the microstrip transmission

line model is shown in Fig. 8(a).  Figs. 8(b) and (c) show the error in S21 by the microstrip transmission

line SMSM and by the microstrip transmission line FSMSM, respectively.  The error of the microstrip

transmission line FSMSM is approximately 4 times less than the corresponding error of the microstrip

transmission line SMSM.

Microstrip Right Angle Bend

In this example we compare between two coarse models for the microstrip right angle bend.  The

first coarse model is taken from [11] and is referred to as Gupta’s model.  The second coarse model is

taken from [12] and is referred to as Jansen’s model.  Both coarse models provide empirical formulas for

the LC circuit in Fig. 9.  The fine model is analyzed by Sonnet’s em [7] as shown in Fig. 9 (a).  The fine

and coarse model parameters are given by fx = [W H rε ]
T
, cx  = [Wc Hc rcε ]

T.  The region of interest is

given in Table III.  The frequency range is 1 GHz to 31 GHz with a step of 2 GHz (Fp = 16).  The number

of base points in the region of interest is 7 (Bp = 7).

The FSMSM was developed for the two coarse models and the corresponding mapping

parameters are given in Table IV.  The enhanced Gupta’s model and the enhanced Jansen’s model were

tested at 50 random points in the region of interest.  The error in S11 by the Gupta’s model and by the

Jansen’s model is shown in Fig. 10.  The error in S11 by the enhanced Gupta’s model and by the enhanced

Jansen’s model is shown in Fig. 11.

It is difficult to compare between the two coarse models since Jansen’s model is more accurate at

lower frequencies (see Fig. 10) and Gupta’s model is slightly more accurate at higher frequencies.

However, after developing FSMSM for each coarse model we can compare between the two coarse

models according to the criteria in Section II.  The values of ß  given by (9) for the enhanced Gupta’s

model and for the enhanced Jansen’s model are 3.4 and 3.5, respectively.  We notice that the value of ß
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in both cases is approximately the same, which means that the accuracy of both coarse models with

respect to the fine model is comparable.

Microstrip Step Junction

In this example we demonstrate the MSMDR.  The fine model of the microstrip step junction

(Fig. 12) is analyzed by Sonnet’s em [4].  The “coarse” model is a built-in element of OSA90/hope [6].

The fine and coarse model parameters are given by fx = [W1 W2 H rε ]
T
, cx = [W1c W2c Hc rcε ]

T.  The

region of interest is given in Table V.  The frequency range is 2 GHz to 40 GHz with a step of 2 GHz (Fp

= 20).  The number of base points in the region of interest is 9 (Bp = 9).  There are six responses to be

matched: the real and imaginary parts of S11, S21 and S22.  We will show that one mapping targeting all

these responses is not sufficient to achieve the required accuracy at the base points.  The required

accuracy is 2,1and2,1,03.0 ==≤ jiEij  where ijE  is defined by (13).  Fig. 13(a) shows the error in

S11 before applying any modeling technique while Fig. 13(b) shows it after developing a single mapping

for all responses.  The results obtained by a single mapping do not satisfy the required accuracy.

The MSMDR algorithm (in Section III) was applied to align the two models.  The algorithm

divided the responses into two groups {Im[S11], Im[S21], Im[S22], Re[S21])} and {Re[S11], Re[S22]} and

developed a separate mapping for each group of responses.  The corresponding mapping parameters for

each group are given in Table VI.  Fig. 13(c) shows the error in S11 at the base points after applying the

MSMDR algorithm.  We notice that the specified accuracy is achieved.

The enhanced coarse model of the step junction was tested at 50 uniformly distributed random

points.  The errors in S11 and S21 by the coarse model are shown in Figs. 14(a) and (b), respectively.  The

errors in S11 and S21 by the enhanced coarse model are shown in Figs. 15(a) and (b), respectively.  The

histograms of the error in S21 at 40 GHz (which is the maximum error in the frequency range 2GHz to 40

GHz) by the coarse model and by the enhanced coarse model are shown in Figs. 16(a) and (b),

respectively.  The mean and standard deviation for the two cases are also shown in Figs. 16(a) and (b).
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Microstrip Shaped T-Junction

In this example we consider a shaped T-junction (Fig. 17(a)).  This T-junction was introduced in

[13] to compensate discontinuities.  It was recently compared in [14] with the other T-junction

configurations in the literature.  The T-junction is symmetric in the sense that all input lines have the

same width w.  The fine model is analyzed by Sonnet’s em [7] and the coarse models is composed of

empirical models of simple microstrip elements (see Fig. 17(b)) of OSA90/hope [5].  The fine and coarse

model parameters are given by T
crccccc

T
rf eyxw wh  weyxw wh  w ][,][ 2c1c21 == xx .

The region of interest is given in Table VII and the frequency range used is 2 GHz to 20 GHz

with a step of 2 GHz (Fp = 10).  The width w of the input lines is determined in terms of h and re  so that

the characteristic impedance of the input lines is 50 ohm.  The width 1w  is taken as 1/3 of the width w.

The width 2w  is obtained so that the characteristic impedance of the microstrip line after the step

connected to port 2 is twice the characteristic impedance of the microstrip line after the step connected to

port 1 (see Fig. 17(b)).  The number of base points in the region of interest is 9 (Bp = 9).

The MSMFI algorithm (in Section III) was applied to enhance the accuracy of the T-Junction

coarse model.  The algorithm divided the total frequency range into two intervals: 2 GHz to 16 GHz and

16 GHz to 20 GHz.  The corresponding mapping parameters for each interval are given in Table VIII.

Figs. 18(a) and (b) show S11 and S22 by Sonnet’s em [7], the T-junction coarse model and the T-

junction enhanced coarse model at two test points in the region of interest.  To perform a more

comprehensive test, 50 random points were generated in the region of interest.  The coarse model errors

in S11 and in S22 defined by (13) are shown in Figs. 19(a) and (b), respectively. The enhanced coarse

model errors in S11 and in S22 are shown in Figs. 20(a) and (b), respectively.

The enhanced coarse model for the shaped T–Junction can be utilized in optimization.  For

example, the T-junction is optimized here to achieve the possible minimum mismatch at the three ports.

The optimization variables are x and y, the other parameters are kept fixed (w = 24 mil, h = 25 mil and

9.9=rε ) [14].  The specifications [14] are 3/1,3/1 2211 ≤≤ SS  in the frequency range 2 GHz to 16
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GHz.  The minimax optimizer in OSA90/hope [5] reached the solution x = 2.1 mil and y = 21.1 mil,

which agrees with the solution obtained in [14].  The magnitude of S11 and S22 obtained by Sonnet’s em

[7], the coarse model and the enhanced coarse model are shown in Figs. 21(a) and (b).  We notice a good

agreement between the results obtained by the enhanced coarse model and by Sonnet’s em.

VI.  CONCLUSIONS

The powerful GSM approach to device modeling is introduced.  Three derivative concepts are

illustrated: the SMSM concept, the FSMSM concept and the MSM concept.  Two variations of MSM are

also presented: MSMDR and MSMFI.  Our approach typically uses only a few EM simulations to

dramatically enhance the accuracy of existing empirical device models.  It involves only simple matrix

operations which makes it an effective CAD tool in terms of CPU time, memory requirement, ease of use

and accuracy.  It also preserves the compactness and simplicity of the original empirical models.  Three

software tools are required to implement GSM: an optimizer (Huber optimizer is recommended since it is

robust against large errors in the data), a suitable circuit simulator and a suitable full-wave EM simulator.
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