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Artificial Neural Network (ANN) Modeling

Artificial Neural Networks are suitable in modeling high-
dimensional and highly nonlinear problems

ANN models are computationally efficient and can be more
accurate than empirical models

multilayer feedforward networks can approximate any
measurable function to any desired level of accuracy, provided a
deterministic relationship between input and target exists

(White et al., 1992)

ANNSs that are too small cannot approximate the desired input-
output relationship

ANNSs with too many internal parameters perform correctly in
the learning set, but give poor generalization ability

ANNSs are suitable models for microwave circuit optimization

and statistical design (Zaabab, Zhang and Nakhla, 1995, Gupta
et al., 1996, Burrascano and Mongiardo, 1998, 1999)
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Classical Neuromodeling of Microwave Components
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many |learning samples are usually needed to ensure model
accuracy

the number of learning samples needed to approximate a
function grows exponentially with the ratio of the
dimensionality to the function’s degree of smoothness
(Stone, 1982)

even with sufficient training data, the reliability of MLPs for
extrapolation may be very poor
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The Aim of Space Mapping
(Bandler et al., 1994-)
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Neural Space Mapping
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Space M apped Neuromodeling (SM N) Concept
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Fregquency-Dependent Space M apped Neur omodeling

(FDSMN) Concept
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Frequency Space Mapped Neuromodeling (FSMN) Concept
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Frequency Mapped Neuromodeling (FMN) Concept
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Frequency Partial-Space M apped Neuromodeling
(FPSMN) Concept
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Training the ANN

the neuromapping can be found by solving the optimization
problem

min H[e_LT & - elT]TH

w contains the internal parameters of the ANN (weights, bias,
etc.) selected as optimization variables

| isthe total number of learning samples

e isthe error vector given by

for SMN
€& = Rf (Xfi’ freqj)' RC(XC’ freqj)
XC =P(Xfi)
for FDSMN
€& = Rf (Xfi’ freqj)' RC(XC’ freqj)
XC = P(Xfi’ freqj)
for FSMN

e, = Rf(xfi, freq;) - R.(X¢, f¢)
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Training the ANN (continued)

éx.u
éfcu:P(xfi, freq;)
e'cu
for FMN
e = Ry (X¢., freq;) - Ro(xy,, f¢)
fo = P(xy,, freq;)
for FPSMN
e = Ry (Xy,, freq;) - RC(X?i, xc, fe)
ex>su
e ‘u=P(xy,, freq;)
efec
with
1=1...,B,
J=1...,F,
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Starting Point and L earning Samples

we chose a unit mapping (X, » X; and f. » freq) asthe starting
point for the optimization problem

to keep areduced set of learning data samples, we consider an n-
dimensional star distribution for the learning base points
(Bandler et al., 1989)

the number of |earning base points for a microwave circuit with
n design parametersisB,=2n+1
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Microstrip Right Angle Bend

region of interest

20mil £ W £ 30mil
8mil £H £ 16mil
8£e£10
1GHz £ freq £ 41GHz

“coarse” mode: Guptamodel (Gupta, Garg and Bahl, 1979)
“fine” model: Sonnet’s emO
learning set: 7 base points with “star” distribution

testing set: 50 random base points in the region of interest
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Microstrip Right Angle Bend Response Errors

comparison before neuromodeling between emO and Gupta
model at 50 random test points

0.35
0.3 /
— 0.25
a
£ 02
= ———
o
S 015
Ll ’ e ——
\%
\
0.1
0.05
0\—
1 6 11 16 21 26 31 36 41
frequency (GHz)
0.45
0.4
0.35
=
gi 0.3 i%% Aéﬁ
£ 025
o}
= 02
L
0.15
0.05
0
1 6 11 16 21 26 31 36 41

frequency (GHz)

99-19-15



Simulation Optimization Systems Research Laboratory
McMaster University

SMN Model for the Right Angle Bend (3L P:3-6-3)
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SMN Model Resultsfor the Right Angle Bend

comparison between emO and the SMN model
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FDSMN Model for the Right Angle Bend (3L P:4-7-3)
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FDSMN Model Resultsfor the Right Angle Bend

comparison between emO and the FDSMN model
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FSMN Model for the Right Angle Bend (3L P:4-8-4)
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implementation: an OSA90/hopeO child program simulates the
coarse model at adifferent frequency variable through Datapipe

99-19- 20



Simulation Optimization Systems Research Laboratory
McMaster University

FSMN Model Resultsfor the Right Angle Bend

comparison between emO and the FSMN model
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HTS Quarter-Wave Parallel Coupled-LineMicrostrip Filter
(Westinghouse, 1993)
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SM Based Neuromodeling of the HTS Filter
region of interest

175mil £ L; £ 185mil
190mil £ L, £ 210mil
175mil £ L3 £ 185mil
18mil £ S, £ 22mil
75mil £S;, £ 85mil
70mil £ S £ 90mil
3.901GHz £ freq £ 4.161GHz

Lo = 50mil

H = 20mil

W= 7mil

e =23.425

loss tangent = 3" 10°°

“coarse” model: OSA90/hoped empirical models
“fine” model: Sonnet’s emO with high resolution grid
learning set: 13 base points with “star” distribution

testing set: 7 random base points in the region of interest (not
seen in the learning set)
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HTS Filter Responses Before Neuromodeling

responses using emO (-) and OSA90/hoped (-) at three
learning and three test points
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HTS Filter Response Errors Before Neuromodeling

coarse model error w.r.t. emO at the learning and testing sets
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FMN Model for the HTS Filter (3LP:7-5-1)

responses using emO (-) and FMN mode! (- ) at the three

learning and three testing points
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FMN Model Response Errorsfor the HTS Filter

FMN model error w.r.t. emO at the learning and testing sets
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FPSMN Model Responsesfor the HTS Filter (3LP:7-7-3)

taking x5 = [L1c Si Tand x5 =[L L3S S T

responses using emO (-) and FPSMN model (- ) at the three

learning and three testing points
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FPSMN Model Response Errorsfor the HTS Filter

FPSMN model error w.r.t. emO at the learning and testing sets
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FPSMN Model for the HTS Filter: Fine Frequency Sweep

comparison between emO (-) and FPSMN model (- ) at two
|learning and one testing points
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New Realizationsin Neur oM odeler

SM based neuromodels of several microstrip circuits have been
developed using NeuroModeler Version 1.2b (1999)

they are entered into HP ADS Version 1.1 (1999) as library
components through an ADS plugin module

E*E,i\fisual Editor For Heural Network Structure: Bend_Gupta_05A90_v12b
File Edit Yiew Template

[F|Bend_Gupta_OSA90_v12h -

Frequency Space Mapped Meuromodel (FShM)
of a Microstrip Kight Angle Eend

rs11 1511 rs21 1521

W H epsr freg

|'Warning: Applet Wwindow
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Conclusions

we present novel applications of Space Mapping technology to
the neuromodeling of microwave circuits

five powerful SM based neuromodeling techniques are
described and illustrated
Space Mapped Neuromodeling (SMN)
Freguency-Dependent Space Mapped Neuromodeling
(FDSMN)
Frequency Space Mapped Neuromodeling (FSMN)
Frequency Mapped Neuromodeling (FMN)
Frequency Partial-Space M apped Neuromodeling
(FPSMN)

these techniques
exploit the vast set of empirical models already available
decrease the fine model evaluations needed for training
Improve generalization ability
reduce complexity of the ANN topology
w.r.t. the classical neuromodeling approach

frequency-sensitive neuromappings expand the useful ness of
empirical quasi-static models

FMN effectively aligns frequency-shifted responses

Huber optimization efficiently trains the neuromappings,
exploiting its robust characteristics for data fitting
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