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The Parameter Extraction Problem

given a vector of measurements Rm , it is required to find a set of
parameters of a model whose response matches Rm

it can be formulated as
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where Ros is the vector of circuit response and xe
os  is the vector

of extracted parameters

in the context of Space Mapping (SM) the fine model response
Rem, typically from an electromagnetic simulator, at a certain
point xem  supplies the target response Rm

multi-point parameter extraction enhances the uniqueness of the
extraction problem and can be formulated as
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Illustration of Parameter Extraction

single-point extraction
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Classification of the Solution of Parameter Extraction

using a vector of matched responses R, a solution xe
os  of the

parameter extraction problem is obtained

this solution is labeled locally unique if there exists an open
neighborhood of xe

os  containing no other point xos  such that
)()( xRxR e

osos =

the local uniqueness condition is equivalent to the condition that
the Jacobian of the vector of matched coarse model responses R
has rank n, where n is the number of optimizable parameters

           locally nonunique                           locally unique
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Problem Definition

assume that multi-point parameter extraction is carried out at
xem  using Np fine model points

then the vector of matched coarse model responses R is given by
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where V p
i ∈∆x )( ; the set of perturbations utilized

it is required to find the perturbation x∆  that can be added to the
set VP and significantly enhances the uniqueness of the
extraction step
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Problem Assumptions

the coarse model is assumed to be much faster than the fine
model

few extra coarse model simulations add negligible overhead to
the computational time of the problem

the first and second order derivatives of the coarse model
responses can be obtained

in the absence of information about the mapping between the
two spaces we take B=I

the mapping B can be integrated with the algorithm if it is
available
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The Locally Nonunique Case

assume that the rank of the Jacobian of matched coarse model
responses at xe

os  is k < n

we impose the condition that the gradients of n− k of the
responses generated by the new coarse model point xe

os + x∆  be
normal to the gradients of a linearly independent set of gradients
of cardinality k of the responses in the vector R

define the set of linearly independent gradients by

{ }gg )((1) ,. k., .  S =

the gradient of each of the n− k selected responses can be
approximated by

xGgg ∆+= )()()( iii
a ,  i=k+1, . . ., n

where g )(i is the gradient of the ith response at xe
os  and G )(i is the

corresponding Hessian
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The Locally Nonunique Case

the perturbation x∆  that satisfies the orthogonality condition is
obtained by solving

cxA −=∆T

where
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this system of linear equations may be under-determined, over-
determined or well-determined

the pseudoinverse of AT is used to find the solution of minimum
length in all cases

x∆  is rescaled to satisfy a certain trust region condition
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The Locally Unique Case

a perturbation of x∆  results in a perturbation of the coarse
model response at the two minima by

xxJR ∆=∆ )( ,11
e
osos

and
xxJR ∆=∆ )( 2,2

e
osos

we impose the condition that the difference between the l2

norms of these two response perturbations be maximized subject
to certain trust region size

it follows that the following Lagrangian can be formed
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it can be shown that the perturbation x∆  is an eigenvector for
the matrix )()()()( 2,2,1,1, xJxJxJxJ e

osos
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the perturbation is then scaled to satisfy the length condition

we make the assumption that IxJxJ =)()( 2,2,
e
osos

e
osos

T
 because of

lack of information about other minima
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The Algorithm Flowchart

Given x(1)
em , δ  and n.
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An Illustration of the Algorithm
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A Quadratic Function

the coarse model is

xxRos
2
2

2
1 +=

the fine model is taken as

)9.01.0()1.09.0( 21
2

21
2 xxxxRem +++=

it is required to extract the coarse model parameters
corresponding to xem=[2.0    1.0]T

4 fine model points were needed to ensure the uniqueness of the
extracted parameters
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The Variation of the Extracted Parameters with the Number
of Fine Model Points for the Quadratic Function

Number of Points xos,1 xos 2,

1 1.95724 0.99458
2 2.10283 0.63094
3 1.92787 1.05337
4 1.89571 1.10868

the exact solution for the parameter extraction problem is
]1.19.1[       e

os =x T
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Contours of the l2  Objective Function for the Quadratic
Function

single-point extraction
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Contours of the l2  Objective Function for the Quadratic
Function

three-point extraction

four-point extraction
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The Rosenbrock Function

the coarse model is

)1()(100 1
22

12
2 uu  uRos −+−=

the fine model is

))2.0(1())2.0(0.2)((100 1
2

1
2

2
2 −−+−−+= uu  uR f

it is required to extract the vector of coarse model parameters at
the point ]0.10.1[     T

3 fine model points were needed for the algorithm to terminate

the variation of the extracted parameters with the number of fine
model points is shown in the table

Number of Points xe
os,1 xe

os 2,

1 1.21541 0.91728
2 0.80008 1.20012
3 0.80008 1.20014
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Contours of the l2  Objective Function for the Rosenbrock
Function

single-point extraction
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Contours of the l2  Objective Function for the Rosenbrock
Function

three-point extraction
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10:1 Impedance Transformer

the design parameters are the characteristic impedances of the
two transmission lines

the lengths of both lines are kept fixed at their optimal values
(quarter wavelength)

the coarse model is an ideal 10:1 impedance transformer

the fine model scales each of the two impedances by 1.6

the responses of both models at 11 different frequencies in the
frequency band  0.5 GHz ≤ f ≤ 1.5 GHz were used to match the
two models

it is required to extract the coarse model parameters
corresponding to the fine model point [2.2628   4.5259]T

3 fine model points were needed to improve uniqueness
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The Matched Responses for the 10:1 Transformer (Single-
Point Extraction)

the set of fine model points utilized in parameter extraction is
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Contours of the l2  Objective Function for the 10:1
Transformer (Single-Point Extraction)
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The Matched Responses for the 10:1 Transformer (Two-
Point Extraction)

the set of fine model points utilized in parameter extraction is
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Contours of the l2  Objective Function for the 10:1
Transformer (Two-Point Extraction)
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The Matched Responses for the 10:1 Transformer (Three-
Point Extraction)

the set of fine model points is
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Contours of the l2  Objective Function for the 10:1
Transformer (Three-Point Extraction)
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HTS Filter
(Westinghouse, 1993, Bandler et al., 1995)

the fine model simulates the filter as a whole

the coarse model is a decomposed version of the fine model with
coarser grid size

both models exploit Sonnet’s em

it is required to extract the coarse model point corresponding to
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HTS Filter

4 fine model points are needed to trust the extracted parameters

Parameter x )1(
f x )2(

f x )3(
f x )4(

f

L1 181.00 182.55 181.34 179.86
L2 201.59 205.64 205.38 197.74
L3 180.97 183.36 184.20 178.08
S1 20.12 20.05 20.07 20.46
S2 67.89 68.40 68.08 67.35
S3 66.85 67.25 66.98 66.46

all values are in mils

Parameter 1 2 3 4

L1 188.31 179.99 176.67 178.50
L2 197.69 204.52 208.52 206.78
L3 189.72 181.230 178.00 179.09
S1 19.34 17.13 17.21 18.99
S2 52.67 63.44 56.52 57.99
S3 52.06 53.18 53.47  56.77

all values are in mils
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The Matched Responses for the HTS Filter

single point extraction

two-point extraction
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The Matched Responses for the HTS Filter

three-point extraction
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The Matched Responses for the HTS Filter

four-point extraction
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Double-Folded Stub Microstrip Filter
(Bandler et al., 1994)

the fine model is the structure simulated by HP HFSS through
HP Empipe3D

the coarse model exploits the microstrip line and microstrip T-
junction models available in OSA90/hope

the coupling between the folded stubs and the microstrip line is
simulated using equivalent capacitors (Walker, 1990)
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Double-Folded Stub Microstrip Filter

the folding effect of the stub is included utilizing the bend model
(Jansen et al., 1983)

W1 and W2 are fixed at 4.8 mil

it is required to extract the coarse model parameters
corresponding to the fine model point

[L1  L2  S]T = [66.73  60.23  9.59]T mils
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Double-Folded Stub Microstrip Filter

9 fine model points are needed to ensure the uniqueness of the
extracted parameters

Parameter x )1(
em x )2(

em x )3(
em x )4(

em x )5(
em x )6(

em x )7(
em x )8(

em x )9(
em

L1 66.73 67.72 67.32 66.15 70.60 67.66 62.82 65.80 66.57
L2 60.23 63.58 64.13 56.33 59.48 64.10 60.88 56.36 59.85
S 9.59 9.27 9.48 9.71 9.71 9.66 9.50 9.52 10.26

all values are in mils

Parameter x (1) e
os x )2( e

os x )3( e
os x )4( e

os x )5( e
os x )6( e

os x )7( e
os x )8( e

os x )9( e
os

L1 58.01 67.05 66.11 64.36 56.46 66.10 56.50 56.39 56.59
L2 38.40 40.47 40.40 43.28 42.94 42.02 42.81 43.00 43.02
S 3.24 6.86 6.64 8.83 18.10 7.99 18.25 17.93 17.87

all values are in mils
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Matched Responses of the Coarse and Fine Models

the given fine model response and the coarse
model response at x (1) e

os
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The Variation of the Objective Function with the Number of
Fine Model Points

at the point x (1) e
os  (  ∗  ) and at the point x )9( e

os  (  ο  )
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Conclusions

we present an Aggressive Parameter Extraction (APE) algorithm

the APE algorithm addresses optimal selection of parameter
perturbations to improve the sharpness of a multi-point
parameter extraction procedure

new parameter perturbations are generated based on the nature
of the minimum reached in the previous iteration

we consider possibly locally unique and locally nonunique
minima

the APE algorithm continues until the extracted coarse model
parameters can be trusted

the algorithm is demonstrated through a number of examples


