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Artificial Neural Network (ANN) Modeling

Artificial Neural Networks are suitable in modeling high-dimensional and highly nonlinear 

problems

ANN models are computationally efficient and can be more accurate than empirical models

multilayer feedforward networks can approximate any measurable function to any desired 

level of accuracy, provided a deterministic relationship between input and target exists

(White et al., 1992)

ANNs that are too small cannot approximate the desired input-output relationship

ANNs with too many internal parameters perform correctly in the learning set, but give poor 

generalization ability

ANNs are suitable models for microwave circuit optimization and statistical design 

(Zaabab, Zhang and Nakhla, 1995, Gupta et al., 1996, Burrascano and Mongiardo, 1998, 

1999)

Simulation Optimization Systems Research Laboratory
McMaster University



Classical Neuromodeling of Microwave Components

many learning samples are usually needed to ensure model accuracy

the number of learning samples needed to approximate a function grows exponentially 
with the ratio of the dimensionality to the function’s degree of smoothness (Stone, 1982)

even with sufficient training data, the reliability of MLPs for extrapolation may be very poor
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The Aim of Space Mapping

(Bandler et al., 1994-)
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Neural Space Mapping

using a three layer perceptron (3LP)
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Space Mapped Neuromodeling (SMN) Concept

once the ANN is trained
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Frequency-Dependent Space Mapped Neuromodeling (FDSMN) Concept

once the ANN is trained
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Frequency Space Mapped Neuromodeling (FSMN) Concept

once the ANN is trained
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Frequency Mapped Neuromodeling (FMN) Concept

once the ANN is trained
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Frequency Partial Space Mapped Neuromodeling (FPSMN) Concept

once the ANN is trained

Simulation Optimization Systems Research Laboratory
McMaster University

coarse

model
s
cx

fc RR »
ANN

fx

fRfine

model

w

freq

cf

s
fx

fx coarse

model

s
cx

fc RR »
ANN

FPSMN model

freq
cf

s
fx



Starting Point and Learning Samples

we chose a unit mapping (xc » x f and fc » freq) as the starting point for training

to keep a reduced set of learning data samples, we consider an n-dimensional star 
distribution for the learning base points (Bandler et al., 1989)

the number of learning base points for a microwave circuit with n design parameters is 
Bp = 2n + 1
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Microstrip Right Angle Bend
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region of interest

20mil  W  30mil

8mil  H  16mil

8  er  10

1GHz  freq  41GHz

“coarse” model: Gupta model (Gupta, Garg and Bahl, 1979)

“fine” model: Sonnet’s em

learning set: 7 base points with “star” distribution

testing set: 50 random base points in the region of interest
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Microstrip Right Angle Bend Response Errors

comparison before neuromodeling between em and Gupta model at 50 random test points
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FSMN Model for the Right Angle Bend (3LP:4-8-4)

implementation: an OSA90/hope child program simulates the coarse model at a different 

frequency variable through Datapipe
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FSMN Model Results for the Right Angle Bend

comparison between em and the FSMN model
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HTS Quarter-Wave Parallel Coupled-Line Microstrip Filter

(Westinghouse, 1993)
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SM Based Neuromodeling of the HTS Filter

Simulation Optimization Systems Research Laboratory
McMaster University

region of interest

175mil  L1  185mil

190mil  L2  210mil

175mil  L3  185mil

18mil  S1  22mil

75mil  S2  85mil

70mil  S3  90mil

3.901GHz  freq  4.161GHz

L0 = 50mil

H = 20mil

W = 7mil
er = 23.425

loss tangent = 3´10
-5

“coarse” model: OSA90/hope
empirical models

“fine” model: Sonnet’s em with high

resolution grid

learning set: 13 base points with “star”

distribution

testing set: 7 random base points in the

region of interest (not seen in the

learning set)



HTS Filter Responses Before Neuromodeling

responses using em (•) and OSA90/hope (-) at three learning and three test points
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FMN Model for the HTS Filter (3LP:7-5-1)

responses using em (•) and FMN model (-) at the three learning and three testing points
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FPSMN Model Responses for the HTS Filter (3LP:7-7-3)

taking xs
c = [L1c S1c] 

T and xs
f = [L2 L3 S2 S3] 

T

responses using em (•) and FPSMN model (-) at the three learning and three testing points
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HTS Filter Response Errors Before Neuromodeling

coarse model error w.r.t. em at the learning and testing sets
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FMN Model Response Errors for the HTS Filter

FMN model error w.r.t. em at the learning and testing sets
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FPSMN Model Response Errors for the HTS Filter

FPSMN model error w.r.t. em at the learning and testing sets
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FPSMN Model for the HTS Filter: Fine Frequency Sweep

comparison between em (•) and FPSMN model (-) at two learning and one testing points
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New Realizations in NeuroModeler

SM based neuromodels of several 

microstrip circuits have been 

developed using NeuroModeler 

Version 1.2b (1999)

they are entered into HP ADS 

Version 1.1 (1999) as library 

components through an ADS 

plugin module
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Conclusions

we present novel applications of Space Mapping technology to the neuromodeling of 

microwave circuits

five powerful SM based neuromodeling techniques are described and illustrated

these techniques

exploit the vast set of empirical models already available

decrease the fine model evaluations needed for training

improve generalization ability

reduce complexity of the ANN topology

w.r.t. the classical neuromodeling approach

frequency-sensitive neuromappings expand the usefulness of empirical quasi-static models

FMN effectively aligns frequency-shifted responses

Huber optimization efficiently trains the neuromappings
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