
 1 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

REVIEW OF THE SPACE MAPPING APPROACH 
TO ENGINEERING OPTIMIZATION AND MODELING  

M. H. Bakr, J. W. Bandler and K. Madsen 
 

SOS-99-25-RR 
 

(Revised August 2000) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

© M. H. Bakr, J. W. Bandler and K. Madsen 1999 
 
No part of this document may be copied, translated, transcribed or entered in any form into any machine 
without written permission.  Address enquiries in this regard to Dr. J.W. Bandler.  Excerpts may be quoted 
for scholarly purposes with full acknowledgement of source.  This document may not be lent or circulated 
without this title page and its original cover. 

REVIEW OF THE SPACE MAPPING APPROACH 
TO ENGINEERING OPTIMIZATION AND MODELING 



 2 

 
Mohamed H. Bakr, John W. Bandler and Kaj Madsen  

 
 

Abstract We review the Space Mapping (SM) concept and its applications in engineering optimization 

and modeling.  The aim of SM is to avoid computationally expensive calculations encountered in 

simulating an engineering system.  The existence of less accurate but fast physically-based models is 

exploited.  SM drives the optimization iterates of the time-intensive model using the fast model.  Several 

algorithms have been developed for SM optimization, including the original SM algorithm, Aggressive 

Space Mapping (ASM), Trust Region Aggressive Space Mapping (TRASM) and Hybrid Aggressive 

Space Mapping (HASM).  An essential subproblem of any SM based optimization algorithm is parameter 

extraction.  The uniqueness of this optimization subproblem has been crucial to the success of SM 

optimization.  Different approaches to enhance the uniqueness are reviewed.  We also discuss new 

developments in Space Mapping-based Modeling (SMM).  These include Space Derivative Mapping 

(SDM), Generalized Space Mapping (GSM) and Space Mapping-based Neuromodeling (SMN).  Finally, 

we address open points for research and future development. 
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I. INTRODUCTION 

We review the Space Mapping (SM) [1-13] approach to engineering device and system 

optimization and modeling.  The target of system optimization is to determine a set of values for the 

system parameters such that certain design specifications are satisfied.  These specifications represent 

constraints on the system responses.  Usually, a model of the physical system is utilized in simulating and 

thus optimizing the system. 

Traditional optimization techniques [14-39] directly utilize the simulated system responses and 

possibly available derivatives.  Engineering models used in simulating the system responses vary in 

accuracy and speed.  Usually, accurate models are computationally expensive and less accurate models 

are fast.  In some engineering problems, applying traditional optimization using the accurate models 

directly may be prohibitively impractical.  On the other hand, applying optimization using the less 

accurate models may indicate feasibility of the design but could lead to unreliable results.  These results 

must be validated using the accurate models or even using measurements.  It follows that alternative 

optimization approaches are desirable. 

SM establishes a mathematical link (mapping) between the spaces of the parameters of two 

different models of the same physical system.  The accurate and time-intensive model is denoted as a 

“fine” model.  The less accurate but fast model is denoted as a “coarse” model.  For example, in the 

context of analog electrical circuit design, a fine model may be a time-intensive finite element solution of 

Maxwell equations while the coarse model may be a circuit-theoretic model with empirical algebraic 

formulas. 

Clear distinction should be made between SM optimization and optimization using 

approximations such as polynomials, response surfaces or splines.  All these methods establish a local 

approximation of the fine model responses using a set of fine model simulations.  This approximation may 

be updated using new fine model points.  On the other hand, SM exploits a coarse model that is physically 

based and capable of simulating the considered system for a wide range of parameter values.  This 

physical model is not updated or changed during SM optimization. 
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All the SM-based optimization algorithms we will review utilize two steps.  The first step 

optimizes the design parameters of the coarse model to satisfy the original design specifications.  The 

second step establishes a mapping between the parameter spaces of the two models.  The space-mapped 

design is then taken as the mapped image of the optimal coarse model design. 

Parameter extraction is an important element in establishing the mapping.  In this step, the coarse 

model parameters corresponding to a given fine model point are obtained.  The extraction problem is 

essentially an optimization problem, and can lead to nonunique solutions. 

The first SM-based optimization algorithm was introduced in [4].  This method assumes a linear 

mapping between the parameter spaces.  This assumption may not be fulfilled if significant 

“misalignment” exists between the two spaces.  Here, “misalignment” denotes the difference between the 

fine model response and the coarse model response for the same set of parameters.  For two identical 

models there is no misalignment.  The more the functional behaviours of the two models differ, the more 

the misalignment increases. 

Aggressive Space Mapping (ASM) [5] eliminates the simulation overhead required in [4].  It 

exploits a quasi-Newton step in predicting the new iterates.  The algorithm does not assume that the 

mapping is necessarily linear.  However, the nonuniqueness of the parameter extraction step may lead to 

divergence or oscillations of the process [6]. 

Several approaches were suggested to improve the uniqueness of the extraction step in the ASM 

algorithm.  These include Multi-Point Extraction (MPE) [6], the penalty approach [7] and the statistical 

parameter extraction approach [8].  The Aggressive Parameter Extraction (APE) algorithm [40] addresses 

the selection of perturbations utilized in the MPE process.  APE classifies the possible solutions to the 

extraction problem.  The perturbations are obtained by either solving a linear system of equations or 

through an eigenvalue problem. 

Trust Region Aggressive Space Mapping (TRASM) [9, 10] integrates a trust region methodology 

with the ASM technique.  It also exploits a Recursive Multi-Point Extraction (RMPE) procedure.  The 

available information about the mapping between the two spaces is utilized in the RMPE. 
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Both ASM and TRASM assume the existence of a coarse model that has sufficient accuracy.  In 

both algorithms coarse model simulations are used to guide the optimization iterates.  If the coarse model 

is severely different from the fine model both algorithms are not likely to converge. 

The Hybrid Aggressive Space Mapping (HASM) algorithm [11, 12] is designed to handle 

severely misaligned cases.  The algorithm utilizes SM optimization as long as SM is converging.  

Otherwise, it switches to direct optimization. 

The reviewed SM optimization algorithms actually automate and are consistent with traditional 

engineering practice.  The rapid development of SM algorithms has not been accompanied, however, with 

corresponding theoretical development of convergence properties.  A comprehensive theory has yet to be 

developed. 

Several approaches have been proposed to utilize the SM concept in engineering modeling.  SM-

based modeling makes use of both the coarse model and the available mapping between the two spaces.  

We review three principal approaches: Space Derivative Mapping (SDM) [41], Generalized Space 

Mapping (GSM) [42] and Space Mapping-based Neuromodeling (SMN) [43, 44]. 

We start by reviewing some concepts and definitions relevant to engineering device and system 

optimization in Section II.  The basic concept of SM optimization in discussed in Section III.  The original 

SM optimization algorithm is discussed in Section IV.  Section V addresses the ASM optimization 

algorithm along with two variant algorithms.  Different approaches for improving the uniqueness of the 

parameter extraction procedure are also reviewed in Section V.  TRASM and HASM are discussed in 

Sections VI and VII, respectively. 

We also give a brief review of recent developments in SM-based modeling approaches in Section 

VIII.  Open points of research in SM are discussed in Section IX.  Finally, the conclusions are given in 

Section X. 
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II. SYSTEM OPTIMIZATION: SOME CONCEPTS AND DEFINITIONS 

The physical system under consideration can be an electrical network, an electronic device, and so 

on.  The performance of the system is described in terms of some measurable quantities.  We denote these 

measurable quantities as the system response functions.  The response functions are manipulated by 

adjusting certain designable parameters of the system.  For example, the electrical response of a 

microstrip line can be adjusted by changing the physical width and length of the strip.  Usually, some or 

all physical parameters are selected as designable parameters and thus can be optimized.  We denote the 

vector of designable parameters by �� nx . 

Each response function relies on some other independent parameters, such as frequency, time and 

temperature [45].  We denote the ith response function by ),( ξx i
i  R , i=1, 2, }, NR , where ξi  is the vector 

of associated independent parameters. 

The desired performance of the system is expressed by a set of specifications.  These 

specifications represent constraints on the responses.  They are functions of a set of the independent 

parameters.   In practice, only a suitable discrete set of samples of the independent parameters is 

considered [45, 46].  Satisfying the specifications at these sampled values typically implies satisfying 

them for other values of the independent parameters. 

Let Pi be the number of discrete samples of the ith response.  We define �� mR as the vector of 

sampled response functions.  The kth component of R is given by 

  RR j
i

i
k ),( ξx=                                                                 (1) 

where   N,  i   j  μk R

i

p p �,2,1for
1

1
=+¦=

−

=
 and j=1, 2, }, Pi.  Here ξ j

i  is the jth sample of ξi  and m is the 

total number of sampled response functions. 

An error function defines the difference between the specification and the corresponding 

response.  In some problems the specifications define a target response that should be reached.  These 

types of specifications are denoted as single specifications [45].  In other problems, specifications define 
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upper and lower bounds on the respective response.  For the case of single specifications the error 

functions are given by 

SRwe kkkk −=                                                              (2) 

where Sk is the kth specification, ^ `k  k kKk Ncs ,,, 21 �=� , the set of indices for the constrained responses, 

wk is a nonnegative weight and Nc is the number of specifications. 

In the case of upper and lower specifications, we classify the constraints on the response 

functions.  We denote by Suk and Slk the kth upper and lower specification, respectively.  Here, the error 

functions are given by 

( )SRwe ukkukk −= , k�Ku                                                     (3) 

and 

( )RSwe klklkk −= , k� Kl                                                                                  (4) 

where Ku and Kl are sets of indices for the constrained responses and wuk and wlk are nonnegative weights.  

It is worth mentioning that simultaneous upper and lower specifications can be imposed on the same 

sampled response function, i.e., Ku and Kl may not be disjoint.  Here ~Ku~+~Kl~=Nc.  Notice that the 

symbol ~ ~ denotes the cardinality when applied to a set.  Otherwise, it denotes the absolute value.  We 

also denote by e the vector whose components are the error functions given by (2) or by (3) and (4). 

It is clear from (3) and (4) that upper and lower specifications are meaningful only in the case of a 

real response while (2) is valid in general for complex responses.  Also, a positive, negative or zero value 

of an error function indicates that the corresponding specification is violated, exceeded or just satisfied, 

respectively.  A set of designable parameters for which e is nonpositive is denoted a feasible design.  The 

set of all feasible designs defines a feasible region in the space of designable parameters.  Fig. 1 illustrates 

the concepts of error functions, feasible design and feasible region. 

The error vector e is evaluated for a given x using the vector of sampled responses R.  R may be 

obtained by measuring the system responses.  However, this approach is usually expensive and time 

consuming.  Alternatively, R may be obtained by using a model of the physical system.  This model 
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utilizes the knowledge available about the physical processes taking place within the system.  Usually, 

different models exist for the same system.  These models vary in their accuracy and the speed with which 

R is obtained.  In the discussion that follows we assume that the system responses are obtained through 

simulation. 

The problem of system design can be formulated as 

°¿

°
¾
½

°̄
°
®


= )(* x
x

x U minarg                                                            (5) 

where U(x) is a scalar objective function that is dependent on the error functions.  U(x) should offer a 

measure of the specifications’ violation or satisfaction.  A possible choice of U(x) is the l p  norm [47], 

Huber norm [48, 49] or the generalized l p  function [38, 50].  The l p  norm of e is given by 

»¼
º

«¬
ª

¦=
=

Nc

k
k

p
p

p e
1

/1

e                                                             (6) 

The most commonly used norm is the l2  norm, i.e., p=2.  This norm is widely used because of its 

differentiability and its statistical properties.  A large number of optimization techniques exist for least-

squares optimization [22].  Solutions obtained using least-squares optimization can be altered significantly 

by the existence of a few wild data points. 

Setting p=1 we have the l1  norm  

¦=
=

Nc

k
ke

11e                                                                    (7) 

This norm is robust to outliers.  It finds wide application in data-fitting in the presence of gross errors 

[34], in analog fault location [51] and device modeling [37]. 

Setting p=f we have the lf  norm 

e k
k

max=
f

e                                                                (8) 

which considers only the worst violated error function.  Many system design problems can be formulated 

as a minimax optimization problem [25]. 
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The l1  and lf  norms are both nondifferentiable.  Corresponding optimization algorithms tend to 

be more involved than least-squares algorithms.  In general, the algorithms used to minimize the l1  and 

lf  norms follow similar strategies.  These algorithms solve the minimization problem in an iterative way.  

In [23, 24], the problem is formulated as a nonlinear program.  Some methods utilize first-order 

derivatives of the error functions to construct sequential linearizations of the nonlinear program.  Such 

methods are denoted as first-order methods.  For example, in [32, 36] the linearization is used to construct 

a linear program that returns a suggested search direction.  A line search is then executed in that direction.  

A trust region methodology [52] is integrated with the linear program formulation in [53].  Some of these 

first-order methods assure global convergence to a stationary point, for example [53].  However, they may 

yield a low convergence rate in the neighborhood of a solution if the problem is singular [54]. 

Another class of methods for the minimization of l1  and lf  norms utilizes approximate second-

order derivatives of the error functions.  These methods solve the first-order optimality conditions using 

quasi-Newton methods [14, 19, 22].  They usually have a high convergence rate in the neighborhood of a 

solution.  However, pure second-order methods do not guarantee global convergence.  Hybrid methods 

[25, 34] combine both first-order and second-order methods.  A first-order method is used far from the 

solution.  Once the solution is approached, a switch to a second-order method is executed.  Several 

switches can take place between the two methods. 

Another norm that can be utilized as an objective function is the Huber norm [48, 49].  This norm 

is a hybrid combination between the l1  and l2  norms.  It is defined by 

)(
1

¦=
=

Nc

k
kαH eρe                                                                    (9) 

where 

°
°
¯

°°
®



!−

d
=

α e 
 

                 e
eα

     α e                             e

eρ

k
k

k

k
k

kα

if
2

if2)(
2

2

                                           (10) 
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where D  is a threshold called the Huber threshold.  This norm treats small errors in the l2  sense while it 

treats large errors in the l1  sense.  Here, we adopt the engineering notation and use the word “norm” for 

the function (9) even though some of the basic norm properties are not satisfied.  Huber optimization [39] 

is more robust against gross errors than least-squares optimization.  It also offers less biased designs than 

those obtained using l1  optimization [39]. 

The previously discussed norms, can be used to minimize the error functions towards zero.  A 

design that corresponds to a zero error vector would be satisfactory if it were not for manufacturing 

tolerances.  These tolerances are inevitable and may cause the constructed physical system to violate the 

specifications.  It follows that optimization should continue to center the design within the feasible region 

[55-57].  The yield is defined as the percentage of the manufactured systems that satisfy the design 

constraints.  Fig. 2 Illustrates the concepts of design centering and yield.  Several algorithms have been 

developed with the aim of maximizing the yield [58-60]. 

The generalized l p  function [38, 50] was developed to enable optimization towards a better 

centered design.  It makes use of the one-sided objective functions 

»¼
º

«¬
ª¦=+

k
k

p
p

p eH
/1

, �ek t 0                                                     (11) 

and 

( ) »¼
º

«¬
ª¦ −−= −

−
−

k
k

p
p

p eH
/1

, �ek < 0                                                (12) 

The generalized l p  function is equal to (11) if at least one of the specifications is violated.  Otherwise, it 

is equal to (12). 

We denote the optimization algorithms discussed thus far as ‘direct optimization’ algorithms.  

They utilize simulations of the optimized system and can be applied if the model simulation time is not 

extensive.  Otherwise, direct optimization becomes prohibitive and alternative methods should be used.  

SM optimization was introduced as such an alternative. 
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III. SPACE MAPPING OPTIMIZATION: THE BASIC CONCEPT 

We refer to the vectors of “fine” model parameters and corresponding “coarse” model parameters 

as �� n
fx and �� n

cx , respectively.  The optimal coarse model design x*
c  is obtained using only coarse 

model simulations.  The corresponding response is denoted by R*
c .  A minimax algorithm [25], if 

appropriate, may be used. 

SM establishes a mathematical link (mapping) P between the two spaces [4] 

)(xPx fc =                                                                 (13) 

such that 

εccff d− )()( xRxR                                                     (14) 

The mapping P is valid over a region in the parameter space.  An approximation to this mapping is 

established in an iterative way.  We denote by P )( j  the available approximation to P at the jth iteration.  

The corresponding fine model design is given by 

)( *1)()1( xPx c
jj

f
−+ =                                                             (15) 

If it satisfies a certain termination criterion, it is accepted as the space mapped design x f .  Otherwise, the 

mapping is updated and a new design is calculated. 

 
IV. THE ORIGINAL SM OPTIMIZATION ALGORITHM 

At the jth iteration, the algorithm utilizes a set of fine model points S j
f

)(  defined by 

^ `xxx )()2((1))( ,,, mj
fff

j
f     S �=                                                     (16) 

where Sm j
fj

)(= .  The fine model response for every point in the set S j
f

)(  is simulated.  A corresponding 

set of coarse model points S j
c

)( defined by 

^ `xxx )()2((1))( ,,, mjccc
j

c     S �=                                                    (17) 
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is then constructed.  The points S j
c

i
c

)()( �x , i=1, 2, }, mj are obtained through the Single-Point Extraction 

(SPE) process (see Fig. 3) 

°¿

°
¾
½

°̄

°
®


−= )()( )()( xRxR
x

x cc
i

ff
c

i
c minarg                                            (18) 

P )( j  is then estimated using S j
f

)( and S j
c

)( .  Here, Every coarse model parameter is expressed as a linear 

combination of some predefined and fixed functions )(x fkM , k=0, 1, }, l.  It follows that 

)()( )()( xAxPx f
j

f
j

c M==                                                  (19) 

where �� +u )1()( lnjA  is a matrix of constant coefficients and )(x fM is given by 

)(x fM =

»
»
»
»
»

¼

º

«
«
«
«
«

¬

ª

)(

)(
)(

1

0

x

x
x

fl

f

f

M

M
M

�
                                                          (20) 

Relation (19) must be satisfied for every pair of corresponding points in S j
f

)( and S j
c

)( .  It follows that 

A )( j should satisfy 

> @ Axxx )()()2((1) jm j
ccc     =� [ )()()( )()2((1) xxx m j

fff     MMM � ]                           (21) 

In [4] it is assumed that the mapping between the two spaces is linear, i.e., 

cxBxPx )()()( )( j
f

j
f

j
c +==                                            (22) 

where �� unnjB )(  and �� njc )( .  The linear mapping (22) is equivalent to (19) with > @BcA )()()( jjj =  

and x k ffk ,)( =xM , k=1, 2, }, n, the kth component of the vector x f , 1)(0 =x fM  and l=n.  It follows that 

(21) can be written as 

> @ »
¼

º
«
¬

ª
=

xxx
Axxx )()2((1)

)()()2((1)
111
m j
fff

jm j
ccc     

�

�
�                                  (23) 

A least-squares solution for A Tj)(  is thus given by 
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( ) QDDDA TTTj 1)( −=                                                     (24) 

where 

»
¼

º
«
¬

ª
=

xxx
D )()2((1)

111
m j
fff

T

�

�
                                              (25) 

and 

> @xxxQ )()2((1) m j
ccc

T    �=                                                  (26) 

Once A )( j  is obtained, the suggested space-mapped design is 

( )cxBxPx )(1)(1)(1)( )( j*
c

j*
c

jm j
f −== −−+                                        (27) 

Here, the mapping is assumed to be one to one.  The new point x )1( +m j
f  is taken as an approximation to the 

optimal fine model design x*
f  if the condition 

ε*
cc

m j
ff d−+ )()( 1)( xRxR                                               (28) 

is satisfied.  In this case we take xx 1)( += m j
ff .  Otherwise, the set S j

f
)(  is augmented by x )1( +m j

f  and the set 

S j
c

)( is augmented by x )1( +m j
c  obtained using (18).  The algorithm steps using (23)-(28) are then repeated 

using the augmented sets.  Fig. 4 illustrates one iteration of the algorithm. 

This algorithm is simple but it suffers from a number of drawbacks.  First, to have the algorithm 

started an initial set of fine model points S f
(0)  must be created.  The points in S f

(0)  are selected in the 

vicinity of a reasonable candidate for the fine model design.  In [4] it is suggested to take xx *
cf =)1( .  The 

other 10 −m  points are selected by perturbation with 10 +t nm .  Simulating S f
(0)  represents a significant 

overhead for the algorithm.  The mapping is also assumed to be linear, which may not be true for 

significantly misaligned models.  Also, coarse model points are obtained through SPE.  Nonuniqueness of 

the extracted parameters may lead to an erroneous mapping estimation and divergence of the algorithm.  

These drawbacks led to the development of the Aggressive Space Mapping (ASM) algorithm [5]. 
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V. THE ASM ALGORITHM 

The space-mapped design x f  is a solution to the system of nonlinear equations 

=−= xxPf *)( cf 0                                                       (29) 

ASM solves (29) in an iterative manner.  Let x )( j
f  be the jth iterate in the solution of (29).  The next iterate 

x 1)( +j
f  is found by a quasi-Newton iteration 

hxx )()()1( jj
f

j
f +=+                                                         (30) 

h )( j  is a solution of 

fhB )()()( jjj −=                                                           (31) 

where xxPf *
c

j
f

jj −= )( )()()( .  B )( j is an approximation to the Jacobian Jm of f  with respect to x f  at x )( j
f .  

Jm is defined by 

¸
¸
¹

·
¨
¨
©

§

w
w

=
=

x
xf

xx
xJ

f

f
T T

j
ff

j
fm

)(
)(

)(

)(                                            (32) 

If the mapping between the two spaces is linear, similar to (22), the matrix Jm is constant.  Otherwise, it is 

a function of the fine model parameters.  The initial approximation to Jm is taken as IB =)0( , the identity 

matrix.  B )( j  is updated at each iteration using Broyden’s rank one update [19] 

 h
 h h

 h B f f
+ B= B

+
+ Tj

jTj

jjjj
jj )(

)()(

)()()(1)(
)(1)( −−

                                    (33) 

The formula (33) can be simplified using (31) to 

 h
 h h

 f
+ B= B

+
+ Tj

jTj

j
jj )(

)()(

1)(
)(1)(                                                   (34) 
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The error vector f )( j  is obtained by evaluating )( )()( xP j
f

j , which is done indirectly through SPE.  The 

algorithm terminates if f )( j  becomes sufficiently small.  A complete iteration of the algorithm is shown 

in Fig. 5. 

The ASM algorithm solves the problem of the overhead encountered in the initial stage of the 

original SM optimization algorithm.  Also, while (23) assumes that the mapping is linear, ASM does not 

make this assumption.  The output of the ASM algorithm is the space-mapped design x f and the matrix 

B , which approximates the Jacobian Jm at x f .  However, the nonuniqueness problem of the SPE process 

remains.  An incorrect value for the vector )( )()( xP j
f

j  may cause the algorithm to diverge or exhibit 

oscillatory behavior. 

Two interesting, intuitive, variants of the ASM algorithm are suggested in [61, 62].  The basic 

idea of both algorithms is practically the same.  The iterate is given by (31) with the matrix B )( j  fixed at 

B )( j =I.  Broyden’s updating formula is not utilized.  These “steepest-descent” approaches may succeed if 

the mapping between the two spaces is essentially represented by a shift. 

An example of ASM optimization is the three-section microstrip impedance transformer [63].  

The filter structure is shown in Fig. 6.  The fine model utilizes a full-wave electromagnetic simulator 

(Sonnet’s em [64]).  The coarse model utilizes the empirical microstrip line and microstrip step models 

available in the circuit simulator OSA90/hope [65].  The designable parameters are the width and physical 

length of each microstrip line.  Here, the reflection coefficient S11  is used to match the two model 

responses.  ASM terminated using only 9 fine model simulations.  The initial and space-mapped responses 

are shown in Figs. 7 and 8, respectively.  A frequency sweep of the fine model requires about one hour of 

CPU time on an HP workstation model 715/33.  The coarse model simulation time is a fraction of a second.  

Optimizing this circuit using direct methods would have probably required dozens of fine model 

simulations. 
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Several approaches were suggested to enhance the uniqueness of the parameter extraction process.  

The first approach is Multi-Point Extraction (MPE) [6].  It simultaneously matches a number of points in 

both spaces.  MPE aims at matching not only the function values but also the first-order derivatives.  The 

point x )1( +j
c  corresponding to x )1( +j

f  is found by solving 

¿
¾
½

¯
®


=+ TT
Np

TT

c

j
c minarg ][ 10

)1( eee
x

x �                                        (35) 

where  

)()( )1(
0 xRxRe +−= j

ffcc                                                           (36) 

and  

)()( )()1()( xxRxxRe i
f

j
ff

i
cci c '+−'+= + , i=1, 2, }, Np                                   (37) 

It follows that the set of utilized fine model points is ^ ` ^ `NiV p
i
f

j
f

j
f , 2, 1,|)()1()1( �='+�= ++ xxx .  The 

perturbations x )(i
c'  and x )(Δ i

f
 are related by [6] 

xx )()( i
f

i
c '=' , i=1, 2, }, Np                                                    (38) 

Integrating this MPE in the ASM algorithm faces some difficulty.  The number of fine model points 

utilized is arbitrary and there is no clear way of how to select them.  Also, available information about the 

mapping between the two spaces is not utilized.  This MPE procedure is illustrated in Fig. 9. 

Another approach is suggested in [7].  Here, the point x )1( +j
c  is obtained by solving the penalized 

SPE process 

( )
°¿

°
¾
½

°̄

°
®


−+−= ++ xxxRxR
x

x *)1()1( )()( cccc
j

ff
c

j
c  w minarg                                      (39) 

where w is a weighting factor.  If the parameter extraction problem is not unique (39) is favored over (18).  

The solution of the extraction problem is biased towards the point x*
c  and thus drives the error vector f to 

zero as the algorithm proceeds.  If w is too large the matching between the responses is poor.  On the other 
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hand, too small a value of w makes the penalty term ineffective.  In which case, the uniqueness of the 

extraction step may not be enhanced. 

A statistical approach to parameter extraction is suggested in [8].  Here, the SPE process (18) is 

initiated from different starting points.  The extraction process is unique if the same values of the 

extracted parameters are obtained for each starting point.  Otherwise, the solution is nonunique.  In this 

case, the solution that results in the best match in terms of some norm is selected. 

In [8] it is suggested that a set of Ns starting points be randomly selected in a region �� nD  

where the solution x )1( +j
c  is expected.  For the jth iteration, D is defined by 

�x i c,  [ fx fx j
ii c

j
ii c

)(*
,

)(*
, 2,2 +− ]                                                  (40) 

for i=1, 2, }, n.  Fig. 10 illustrates the selection of the interval D for the two-dimensional case. 

The Aggressive Parameter Extraction (APE) algorithm [40] addresses the selection of the 

perturbations utilized in the MPE process.  It suggests perturbations that are likely to impact the 

uniqueness of the parameter extraction step. 

APE classifies the possible solutions of the parameter extraction problem as either locally 

nonunique or locally unique.  In the locally nonunique case the minimum of the extraction problem is 

assumed over a surface.  For the locally unique case the minimum is assumed at a point.  Figs. 11 and 12 

illustrate the classification of the extracted parameters. 

To illustrate the APE algorithm, assume that the point x )1( +j
c  corresponding to x )1( +j

f  is obtained 

through MPE.  The utilized set of fine model points is V with NV = .  If x )1( +j
c  is locally nonunique, APE 

suggests a new point to be added to V.  This point is likely to make the extracted parameters using the 

augmented set locally unique.  It is obtained by solving a linear system of equations that utilizes the 

gradients and Hessians of coarse model responses at x )1( +j
c . 

If x )1( +j
c  is locally unique, the new point x )(N

f  to be added to the set V is obtained by solving the 

eigenvalue problem 
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cc
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cc

T λ '='+++                                                   (41) 

and 

xxx )()1()( N
f

j
f

N
f '+= +                                                                  (42) 

where Jc is the Jacobian of coarse model responses.  Here, the coarse model perturbation x )(Δ N
c  and the 

fine model perturbation x )(Δ N
f  are related by the available mapping.  The obtained perturbation is scaled 

to satisfy a certain trust region. 

 

VI. THE TRASM ALGORITHM 

TRASM [9, 10] integrates a trust region methodology [52] with the ASM technique.  Similar to 

ASM, TRASM aims at solving (29).  However, instead of utilizing a quasi-Newton step the problem is 

solved as a least-squares problem.  In the jth iteration the objective of TRASM is to minimize f )1( 2

2
+j  

within a certain trust region.  To achieve this, TRASM utilizes a linearization of the vector function f )1( +j .  

The linearized objective function is thus given by 

hBfhx )()()( 2

2
)()( ),( jjjjjL +=                                                    (43) 

The suggested step is obtained by solving 
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subject to δ jj )()(
2

dh                                                         (45) 

where δ j)(  is the size of the trust region.  The solution of (43)-(45) is obtained by solving [66, 67] 

fBhIBB )()()()()()( )( jTjjjjTj  λ −=+                                            (46) 

where λ j)(  correlates to δ j)( .  The larger the value of δ j)(  the smaller the value of λ j )(  and vice versa.  

TRASM makes use of the algorithm suggested in [68] to determine the value of λ j )( . 
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The suggested iterate is .)()()1( hxx jj
f

j
f  +=+   Unlike ASM, x )1( +j

f  is accepted only if it satisfies a 

success criterion with respect to the reduction in the 2"  norm of the vector f .  The success criterion 

utilized by TRASM is 
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ff
j jjj

j
k

j

                                             (47) 

The subscript k indicates the number of points utilized in the Recursive Multi-Point Extraction (RMPE).  

It follows that Vk = , where V is the set of fine model points used in the RMPE.  Initially V=^ `x )1( +j
f  and 

k=1. 

If (47) is satisfied x )1( +j
f  is accepted and B )( j is updated using (33).  Otherwise, the validity of the 

extraction process leading to f )1( +j
k  is suspect.  The residual vector f )1( +j

k  is then used to construct a 

temporary point x )(k
t  from the point x 1)( +j

f  by using (46).  The set V is updated to V� x )(k
t .  RMPE is then 

repeated using the augmented set V to get f )1(
1
+

+
j

k .  RMPE is given by (35)-(37) with (38) replaced by 

xBx )()()( i
f

ji
c '='                                                             (48) 

Thus, the available information about the mapping between the two spaces is exploited.  Fig. 13 illustrates 

the RMPE procedure. 

The new error vector f )1(
1
+

+
j

k  either satisfies (47) or it is used to obtain another additional point 

which is then added to the set V.  RMPE is then repeated until the extracted parameters are trusted (see 

Fig. 14). 

TRASM trusts the vector of extracted parameters if it approaches a limit.  The sufficient condition 

for this is 

εj
k

j
k d− ++

+ ff )1()1(
1                                                              (49) 
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The trusted value of f )1( +j
k  is denoted simply by f )1( +j .  If f )1( +j  satisfies (47), x )1( +j

f is accepted and the 

matrix B )( j is updated using (33).  Otherwise, the accuracy of the linearization used to predict h )( j  is 

suspected.  Thus, to ensure a successful step from the current point x )( j
f , the trust region size is shrunk and 

a new suggested point x )1( +j
f is obtained.  During RMPE we may have 1+= nV .  In this case, sufficient 

information is available to obtain an estimate for the Jacobian J )( j
f of the fine model responses.  J )( j

f  is 

then used to obtain an alternative h )( j . 

The size of the trust region is updated at the end of each iteration based on the match between the 

actual reduction and the predicted reduction in f .  The trust region size is increased if the condition 

( ) ( )hBffff )()()()(1)()( 80.0 j jjj+jj  +−t−                                            (50) 

is satisfied.  It should be mentioned that the constants utilized in (47) and (50) are arbitrary. 

The design of a High-Temperature Superconducting (HTS) filter [1] is carried out using TRASM 

[9].  The filter is shown in Fig. 15.  The designable parameters are L1, L2, L3, S1, S2 and S3.  The coarse 

model exploits the empirical models of a microstrip line, coupled lines and open stubs available in 

OSA90/hope.  The fine model employs the method of moments simulator em.  The initial fine model 

response is shown in Fig. 16.  Only 8 fine model simulations were required by TRASM.  The space-

mapped response is shown in Fig. 17.  On a Sun SPARCstation 10, the fine model requires one hour of 

CPU time per frequency point.  The coarse model requires a fraction of a second for a complete sweep. 
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Both the ASM and TRASM algorithms are efficient.  The number of required fine model 

simulations is of the order of the problem dimensionality.  However, both models depend on the existence 

of a coarse model that is fast and has sufficient accuracy.  The main prediction steps in (31) and (46) show 

that coarse model simulations are used to guide the optimization iterates.  If the coarse model is severely 

different from the fine model the ASM algorithm is likely to diverge and TRASM may stop at a solution 

that is not close to the required design.  To overcome this problem the Hybrid Aggressive Space Mapping 

(HASM) algorithm was developed. 

 

VII. THE HASM ALGORITHM 

HASM exploits SM when effective, otherwise it defaults to direct optimization.  Two objective 

functions are utilized by the algorithm.  The first objective function is 

xxPf *)()( 2

2
)( 2

2
)( c

j
f

jj −=                                                        (51) 

which is the TRASM objective function.  The second objective function is 

)()( *)( 2

2
)( 2

2
xRxRg cc

j
ff

j −=                                                     (52) 

and is denoted as the direct optimization objective function. 

HASM consists of two phases: the first phase follows the TRASM strategy while the second 

phase exploits direct optimization.  For switching between the two phases the algorithm utilizes a 

relationship that relates the established mapping to the first-order derivatives of both models [11, 12].  

This relationship stipulates that if xc  corresponds to x f  through a parameter extraction process, then the 

Jacobian J f  of the fine model response at x f  and the Jacobian Jc  of the coarse model response at xc  are 

related by 

BJJ cf =                                                                                                         (53) 

where B is a valid mapping between the two spaces at xc  and x f .  Another important relationship that 

follows from (53) is 
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( ) JJJJB f
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T 
c

  -1=                                                             (54) 

(54) assumes that Jc  is  full rank and m t n, where m is the dimensionality of both R f  and R c . 

In the jth iteration we assume the existence of a trusted )( )()()( xPx j
f

jj
c    = .  The step taken is given 

by (46) where .)()()1( hxx jj
f

j
f  +=+   SPE is then applied at x )1( +j

f to get .)( *)1()1(
1 xxPf c

j
f

j −= ++  

The first phase utilizes two success criteria related to the reduction in (51) and (52).  The first 

success criterion is given by (47).  The success criterion related to (52) is given by 

gg )()1( jj �+                                                               (55) 

x )1( +j
f  is accepted if (55) is satisfied.  The first phase continues and the matrix B )( j is updated if 

(47) is also satisfied for a trusted f )1( +j . 

Switching to the second phase takes place in two cases.  The first case occurs if (55) is not 

satisfied.  The second phase is then supplied by  j
fx )( , J )( j

f  and f )( j .  Here, J )( j
f  is estimated from J )( j

c  

and B )( j  by using (53). 

The second case occurs when x )1( +j
f  satisfies (55) but does not satisfy (47) for a trusted f 1)( +j .  

B )( j  is updated to B 1)( +j  using (33).  The second phase is supplied with x )1( +j
f , f 1)( +j  and J )1( +j

f .  J )1( +j
f  is 

estimated from J )1( +j
c  and B )1( +j  by using (53).  If V  reaches n+1 during RMPE, J )1( +j

f  is instead 

estimated through finite differences. 

The second phase utilizes the first-order derivatives supplied by the first phase to carry out a 

number of successful iterations with the target of minimizing (52).  At the end of each successful iteration 

parameter extraction is applied at the new iterate x )1( +k
f  and is used to check whether a switch to the first 

phase is possible.  Here, k is used as an index for the iterations of the second phase.  In the original 

implementation, switching back to the first phase takes place if 
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ff )()1( kk �+                                                                  (56) 

In this case J )1( +k
c  is evaluated at )( )1()1( xPx ++ = k

c
k

c .  B is then recovered using (54).  Fig. 18 illustrates the 

connection between SM optimization and direct optimization. 

HASM is illustrated by considering a six-section H-plane waveguide filter [69, 70].  The filter is 

shown in Fig. 19.  The fine model utilizes the finite element simulator HP HFSS [71] through HP 

Empipe3D [72].  The designable parameters are the four septa widths W1, W2, W3 and W4 and the three 

waveguide-section lengths L1, L2 and L3.  The coarse model consists of lumped inductances and dispersive 

transmission line sections.  It is simulated using OSA90/hope.  A simplified version of a formula due to 

Marcuvitz [73] is utilized in evaluating the inductances.  The coarse model is shown in Fig. 20.  The 

responses obtained through different design stages are shown in Figs. 21 and 22. 

In a later implementation, both the recovery of B and the switching back criterion were modified.  

The mapping recovery step (54) is made better conditioned by constraining B to be close to the identity 

matrix I.  This follows from the fact that the fine and coarse models share the same physical background 

[42].  B is thus obtained by solving 
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where ei is the ith column of the matrix  

BJJE )1()1()1( +++ −= k
c

k
f

k                                                          (58) 

'bi is the ith column of the matrix 

IBB −='                                                                (59) 

The solution to (57) is given by 

( ) ( )IJJIJJB ww k
f

Tk
c

k
c

Tk
c

2)1()1(2)1()1( 1 ++= ++++ −                                     (60) 

(60) is identical to (54) if w=0.  In this modified implementation switching back to the first phase takes 

place if B given by (60) is able to predict with sufficient accuracy the reduction in f )(k . 
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VIII. SM-BASED MODELING 

Thus far we focused on optimization algorithms.  In this section we briefly discuss some of the 

SM-based modeling algorithms.  The basic concept is to establish a mapping between the parameter 

spaces that is given by (13) and (14).  The fine model response is then approximated by 

))(()( xPRxR fcff
|                                                        (61) 

The model given by (61) offers a fast approximation to the time-intensive fine model response.  SM-based 

modeling approaches differ in the way in which the mapping is established, the nature of the mapping and 

the region of validity of the obtained model.  We review three of these algorithms; Space Derivative 

Mapping (SDM), Generalized Space Mapping (GSM) and Space Mapping-based Neuromodeling (SMN).  

Fig. 23 illustrates the concept of SM based modeling. 

Space Derivative Mapping (SDM) [41] 

This algorithm develops a locally valid approximation of the fine model in the vicinity of a 

particular point x f .  We denote by J f  the Jacobian of the fine model responses at x f .  The first step of 

the algorithm is to obtain the point xc  corresponding to x f  through the SPE problem (18).  The Jacobian 

J c at x c  may be estimated by finite differences.  Both (18) and the evaluation of J c should add no 

significant overhead.  The mapping matrix B is then calculated by applying (54) as 

( ) JJJJB f
T 

cc
T 

c
  1−

=                                                               (62) 

Once B is available the linear mapping is given by 

)()( xxBxxPx ffcfc   −+==                                                        (63) 

The SDM model is given by (61) with P given by (63).  In a later implementation, the matrix B is 

estimated using (60). 

Generalized Space Mapping (GSM) Modeling [42] 
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This approach integrates three previously suggested SM modeling concepts [4, 5, 74].  The model 

is expected to be accurate in a region of the fine model space �� nD .  The mapping between the two 

spaces is assumed to be of the form 

cxBxPx +== ffc )(                                                            (64) 

A set of fine model points V� D is constructed.  The mapping parameters B and c are then obtained 

through the optimization procedure 
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where 
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i
fi c −+=                                                        (66) 

where Vi
f �x )( , i=1, 2, }, N and NV = .  A star-like set of points is utilized in [42].  This selection of V 

is illustrated in Fig. 24 for the three-dimensional case.  In (65) B can be constrained to be close to I 

similar to (60). 

Another variation of (65) that is pertinent to analog electrical circuit device modeling is to include 

the frequency as a mapped parameter.  This is essential if there are constraints on the possible simulated 

frequencies of the coarse model [43].  Also, it is reported that the accuracy of the SM model is 

significantly improved by utilizing a frequency-sensitive mapping. 

Space Mapping-based Neuromodeling (SMN) [43, 44] 

In Section IV we noticed that the basic idea of the original SM optimization algorithm is to 

express each coarse model parameter as the sum of predefined functions of the fine model parameters.  

Relation (19) can be written as 

¦=
=

n

j
fjijic ax

1
 , )(xM                                                                 (67) 
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Consider a three-layer Artificial Neural Network (ANN) [75].  The inputs to this network are the fine 

model parameters and the outputs approximate the corresponding coarse model parameters.  It follows 

that each output can be expressed as (see Fig. 25) 

¦ +=
=

nh

j
jf

T
jjiji θψay

1
)( xw                                                          (68) 

where nh is the number of hidden neurons and ψ j  is the activation function associated with the jth hidden 

neuron.  Here, > @aaa nhiii
T 

i �21=a  is the vector of weights associated with the ith output neuron, 

w j  is the vector of weights associated with the jth hidden neuron and θ j  is the corresponding threshold. 

By comparing (67) and (68) we see that a trained ANN can approximate the mapping between the 

two spaces. The universal approximation theorem [75] assures that a three-layer ANN is capable of 

approximating any nonlinear mapping between the two spaces. 

Similar to GSM, an ANN is trained to approximate the mapping between the two spaces in a 

subset D of the parameter space.  Given a set of training points V�D, the training problem is given by 
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where 

)()( )(xRyRe i
ffi c −=                                                        (70) 

and i=1, 2, }, N and NV = . 

The optimized mapping parameters are defined by  

> @wwwW nh
 �21= , > @θθθ nh

T �21=θ and > @aaaA n
 �21=           (71) 

This approach is superior to other modeling approaches that utilize ANNs [76, 77] because it 

results in a simple neural network and utilizes fewer training points [43]. 

Several variations to this approach that are more pertinent to analog electrical circuit modeling 

have been suggested in [43, 44].  The main concept in all these variations is to obtain a frequency-
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sensitive mapping that improves the accuracy of the SM model.  The star distribution shown in Fig. 24 is 

also used for V.  The GSM approach can be visualized as a special case of SMN where the ANN has only 

two layers with no hidden neurons (see Fig. 26). 

 

IX. FUTURE RESEARCH IN SM 

Coarse Model Generation 

All the SM-based algorithms thus far depend on the existence of a coarse model with sufficient 

accuracy.  The generation of such a model requires knowledge of the problem and is still the user’s 

responsibility.  We expect more research on the automated generation of fast coarse models that have 

sufficient accuracy.  Lightly trained neural networks may be one possible solution to this problem. 

Neural Network-Based SM Optimization 

Recently, an SM neuromodeling approach was introduced [43, 44].  A pioneering work [78] 

extends this concept to SM optimization.  Here, a SM Neuromodel is utilized in optimizing the fine 

model.  The complexity of the ANN is increased in every iteration with the newly generated fine model 

points.  We expect further research to be carried out in this direction. 

 

 

Optimality Conditions of SM Optimization 

Research is being carried out to develop a comprehensive theory for the optimality conditions of 

SM.  Development of such a theory will help robustize the SM-based optimization algorithms. 

Using Surrogate Models 

Research is currently conducted on the integration of surrogate models [79-83] with SM 

optimization.  Surrogate-based optimization aims at efficiently optimizing a computationally-expensive 

model.  Unlike SM optimization, the design problem is not formulated as an equivalent nonlinear system.  

Alternatively, the original design problem is solved using an approximate model.  This approximate 

model may be a less accurate physically-based model or an algebraic model.  The generated iterates are 
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validated through fine model simulations.  The accuracy of the surrogate model is improved in every 

iteration using the generated simulations.  A novel work [84] combines SM and surrogate model 

optimization in a powerful algorithm.  We expect that more research will be conducted in this area.   

 

X. CONCLUSIONS 

In this work we reviewed the SM approaches to engineering optimization and modeling.  SM 

optimization makes use of the existence of a less accurate but fast model to accelerate the optimization 

problem.  The algorithms reviewed include the original SM optimization algorithm, ASM, TRASM and 

HASM algorithms.  The original SM optimization algorithm utilizes two corresponding sets of points to 

establish the mapping between the two spaces.  ASM eliminates the overhead simulations to obtain the 

initial mapping.  However, it suffers from the nonuniqueness of the parameter extraction subproblem.  

The TRASM algorithm integrates a trust region methodology with the ASM technique.  It also utilizes a 

recursive multi-point extraction approach.  HASM addresses the problem of severely misaligned coarse 

models.  It allows switching between SM optimization and direct optimization.  We also reviewed the 

different approaches for improving the uniqueness of the parameter extraction problem.  These include 

multi-point extraction, penalized parameter extraction, statistical parameter extraction and aggressive 

parameter extraction.  The different approaches for SM-based engineering modeling were briefly 

discussed.  We reviewed the SDM, the GSM and the SMN algorithms.  Finally, we suggested some of the 

open points for research in SM. 
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Fig. 1. Illustration of some basic engineering optimization concepts; (a) the responses at a feasible 

design x1 and an infeasible design x2, (b) the error functions at sampled values of the independent 
parameter Z  and (c) a possible location of the two designs with respect to the feasible region for 
a two-dimensional case. 
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Fig. 2. Illustration of design centering and yield for a two-dimensional problem with manufacturing 

tolerances of 'x1 and 'x2.  Three different designs are shown; a centered design where all 
possible outcomes are feasible (yield=1), an infeasible design where possible outcomes are 
infeasible (yield=0) and non centered feasible design where possible outcomes may be feasible 
or infeasible (0<yield<1). 
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Fig. 3.  Illustration of the SPE procedure for a two-dimensional problem. 
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Fig. 4. Illustration of the original SM optimization algorithm; (a) a new point x 1)( +m j

f is obtained using 

the current mapping approximation P )( j , (b) the point x 1)( +mj
f  does not satisfy the stopping 

criterion and the sets S j
f

)(  and S j
c

)(  are augmented by x 1)( +mj
f  and x 1)( +mj

c , respectively, and (c) a 

new mapping P )1( +j  is estimated and is used to obtain a new iterate x )2( +mj
f . 
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Fig. 5. Illustration of ASM; (a) a new iterate x 1)( +j

f  is obtained, (b) by applying parameter extraction we 

find that the stopping criterion is not satisfied ( f )1( +j >H) and (c) the updated matrix B )1( +j  is 

used to predict a new iterate x )2( +j
f . 
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Fig. 6.  The three-section 3:1 microstrip impedance transformer [63]. 
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Fig. 7. The optimal coarse model response (⎯) and the fine model response (R) at the initial design for 
the three-section microstrip transformer. 
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Fig. 8. The optimal coarse model response (⎯) and the fine model response (R) at the space-mapped 

design for the three-section microstrip transformer. 
 
 
 
 

 
Fig. 9.  Illustration of MPE at the jth iteration. 
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Fig. 10.  The region utilized in the statistical parameter extraction approach for obtaining x*

c . 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 

Fig. 11.  Illustration of a locally nonunique solution of parameter extraction for a two-dimensional case.
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Fig. 12. Illustration of a locally unique solution of parameter extraction for a two-dimensional case; three 
locally unique minima are shown. 

 
 
 

 
Fig. 13.  Illustration of RMPE. 
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Fig. 14. Illustration of the TRASM algorithm; (a) in the jth iteration the point x )( j

f  corresponds to a 
trusted error vector f )( j , (b) a new iterate x )1( +j

f  is taken and SPE is carried out to get f )1(
1
+j  and 

(c) the vector f )1(
1
+j  does not satisfy the success criterion so a temporary point x )1(

t  is generated 
and two-point extraction is carried out to get f )1(

2
+j  which satisfies the success criterion. 
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Fig. 15.  The structure of the HTS filter [1]. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 16. The optimal coarse model response (⎯) and the fine model response (R) at the initial design for 
the HTS filter. 
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Fig. 17. The optimal coarse model response (⎯) and the fine model response (R) at the space-mapped 

design for the HTS filter. 
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Fig. 18.  Illustration of the connection between SM optimization and direct optimization. 
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Fig. 19.  The fine model of the six-section H-plane waveguide filter [69, 70]. 
 
 

 
 
 

 
Fig. 20.  The coarse model of the six-section H-plane waveguide filter [73]. 
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Fig. 21. The optimal coarse response (⎯) and the fine response (R) at the initial design for the six-

section H-plane waveguide filter. 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 22. The optimal coarse response (⎯) and the fine response (R) at the end of the second phase for 
the six-section H-plane waveguide filter. 
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Fig. 23.  Illustration of the SM approach to engineering modeling. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

Fig. 24.  A three-dimensional illustration of the star distribution utilized in GSM and SMN. 
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Fig. 25.  Illustration of the SMN approach. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 26.  Illustration of GSM as a special case of SMN. 
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