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Space Mapping Based Neuromodeling

In modeling microwave components using Artificial Neural
Networks (ANN), the learning data is obtained from a
detailed or “fine” model (typically an EM simulator), which
is accurate but slow to evaluate.  This is aggravated because
simulations are needed for many combinations of input
parameter values.  We use available equivalent circuits or
“coarse” models to overcome this limitation.

In the Space Mapping (SM) based neuromodeling
techniques [1] an ANN is used to implement a suitable
mapping from the fine to the coarse input space.  The
implicit knowledge in the coarse model not only allows us
to decrease significantly the number of learning points
needed, but also to reduce the complexity of the ANN and
to improve the generalization performance.  Once the ANN
is trained, an SM based neuromodel for fast, accurate
evaluations is available.

Including Frequency in the Neuromapping

Many empirical models are based on quasi-static analysis:
they usually yield good accuracy over low frequencies.  We
overcome this limitation through a frequency-sensitive
mapping from the fine to the coarse parameter space.  This
is realized by considering frequency as an extra input
variable of the ANN that implements the mapping. The
Frequency Space-Mapped Neuromodeling (FSMN)
technique establishes a frequency-sensitive mapping not
only for the design parameters but also for the frequency
variable, such that the coarse model is simulated at a
mapped frequency fc to match the fine model response.  This
is realized by adding an extra output to the ANN that
implements the mapping.  Three additional techniques to
efficiently create frequency-sensitive neuromappings are
proposed in [1].

SM Based Neuromodel of a Microstrip Right Angle Bend

Consider a microstrip right angle bend with conductor width
W, substrate height H, substrate dielectric constant εr, and
operating frequency freq.  An FSMN model is developed for
the following region of interest: 20mil ≤ W ≤ 30mil, 8mil ≤
H ≤ 16mil, 8 ≤ εr ≤ 10, and  1GHz ≤ freq ≤ 41GHz.

Sonnet’s em [2] is used as the fine model. To evaluate the
generalization performance of our neuromodel, 50 random
test base-points with uniform statistical distribution within
the region of interest are generated using a frequency step of
2 GHz (1050 test samples).  Following a star distribution for
the learning points [1], only 7 base points are used for
learning (147 learning samples).

Gupta’s model is taken as the “coarse” model [1].  Fig. 1a
illustrates the FSMN neuromodeling strategy for the
microstrip bend, which was implemented using
NeuroModeler [3] as shown in Fig. 1b.   The FSMN model
as implemented in NeuroModeler consists of a total of 6

layers. The first layer, shown in green color, has the input
parameters of the neuromapping (W, H, εr, and freq), which
are scaled to ±1 to improve the numerical behavior during
training.  The second layer from bottom to top corresponds
to the hidden layer of the ANN implementing the mapping
(see Fig. 1b): optimal generalization performance is
achieved with 8 hidden neurons with sigmoid non-
linearities.  The third layer is linear and contains the coarse
design parameters and the mapped frequency fc before de-
scaling.  The fourth layer is added to simply de-scale the
parameters.  Gupta’s formulas to calculate L and C are pro-
grammed as the internal analytical functions of the fifth
hidden layer, using the built-in MultiSymbolicFixed
function.  Finally, the output layer, shown in blue color,
contains a simple internal circuit simulator that computes
the real and imaginary parts of S11 and S21 for the lumped
LC equivalent circuit. This layer uses the built-in
CktSimulatorPS function.

Fig. 2 shows the learning and testing errors of the bend
FSMN model after training using NeuroModeler.
Conjugate Gradient and Quasi Newton built-in training
methods are used.  The average and worst case learning
errors are 0.43% and 1.00%, while the average and worst-
case testing errors are 1.04% and 10.94%.  Excellent
generalization performance is achieved.

The FSMN model of the right angle bend can now be used
in Agilent ADS for fast and accurate simulations within the
region of interest: it can be entered as a user-defined model
through the plug-in module NeuroADS [4].

Conclusions

We present novel realizations of SM based neuromodels of
practical passive components using available software. A
Frequency Space-Mapped Neuromodel (FSMN) of a
microstrip right angle bend is implemented using
NeuroModeler, and entered into ADS as a library
component through an ADS plug-in module.
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Fig. 1.  Frequency Space-Mapped Neuromodel (FSMN) of a microstrip right angle bend:
             (a) strategy, (b) implementation in NeuroModeler.
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Fig. 2.  Learning and testing errors of the FSMN model after training: (a) histogram of learning errors,

                (b) histogram of testing errors, (c) correlation to learning data, and (d) correlation to testing data.


