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Space Mapping Based Neuromodeling layers. The first layer, shown in green color, has the input

In modeling microwave components using Artificial Neural Parameters of the neuromappiyf, H, &, andfreq), which
Networks (ANN), the learning data is obtained from aare scaled tal to improve the numerical behavior during
detailed or “fine” model (typically an EM simulator), which training. The second layer from bottom to top corresponds
is accurate but slow to evaluate. This is aggravated becauisethe hidden layer of the ANN implementing the mapping
simulations are needed for many combinations of inpufsee Fig. 1b): optimal generalization performance is
parameter values. We use available equivalent circuits @&chieved with 8 hidden neurons with sigmoid non-
“coarse” models to overcome this limitation. linearities. The third layer is linear and contains the coarse

In the Space Mapping (SM) based neuromodelin esign parameters and the_ mapped frequécnbyfore de-
techniques [1] an ANN is used to implement a suitabl caling. The fourth layer is added to simply de-scale the

mapping from the fine to the coarse input space. ThBarameters. Gupta's formulas to calculatandC are pro-
implicit knowledge in the coarse model not only allows usgrammed as the internal analytical functions of the fifth

to decrease significantly the number of learning pointi'dde.n Iaﬁgr, I uswr\]g the blunt-m 'r\]/lu't'symg?“CF'de
needed, but also to reduce the complexity of the ANN an nctlc_)n. inally, t € OUtqu ayer, shown n biue color,
to improve the generalization performance. Once the ANNONtains a simple internal circuit simulator that computes

is trained, an SM based neuromodel for fast, accurat@e real gnd imagi.nary parts_ 8f, and s, for the Iumpgd_
LC equivalent circuit. This layer uses the built-in

evaluations is available. ) !
Including F in the N i CktSimulatorPS function.
ncluding Frequency in the Neuromappin . . .
uding ”equ Y apping ) i Fig. 2 shows the learning and testing errors of the bend
Many empirical models are based on quasi-static analysi§gyN  model  after training  using NeuroModeler.

they usually yield good accuracy over low frequencies. W%onjugate Gradient and Quasi Newton built-in training

overcome this limitation through a frequency—sensnwemethodS are used. The average and worst case learning

mapping from the fine to the coarse parameter space. Tmﬁrors are 0.43% and 1.00%, while the average and worst-

is realized by considering frequency as an extra iNPYase testing errors are 1.04% and 10.94%. Excellent
variable of the ANN that implements the mapping. The

Frequency  Space-Mapped  Neuromodeling  (FSMN generalization performance is achieved.
technique establishes a frequency-sensitive mapping nof'€ FSMN model of the right angle bend can now be used

only for the design parameters but also for the frequencn Agilent ADS for fast and accurate simulations within the
variable. such that the coarse model is simulated at gion of interest: it can be entered as a user-defined model

mapped frequendly to match the fine model response. ThistNfough the plug-in moduldeuroADS[4].

is realized by adding an extra output to the ANN thatConclusions

implements the mapping. Three additional techniques tw/e present novel realizations of SM based neuromodels of
efficiently create frequency-sensitive neuromappings ar@ractical passive components using available software. A
proposed in [1]. Frequency Space-Mapped Neuromodel (FSMN) of a
SM Based Neuromodel of a Microstrip Right Angle Bend microstrip right angle bend is implemented using

Consider a microstrip right angle bend with conductor WidtH\leuroModeIer, and entered Into ADS as a library
W, substrate heightl, substrate dielectric constagt and component through an ADS plug-in module.

operating frequencfreq. An FSMN model is developed for Acknowledgement

the following region of interest: 20md W < 30mil, 8mil<  The authors thank Dr. J.C. Rautio, President, Sonnet

H< 16mil, 8< ¢ <10, and 1GH=x freq< 41GHz. Software, Inc., Liverpool, NY, for makingn(] available.

Sonnet'sem [2] is used as the fine model. To evaluate theReferences

generalization performance of our neuromodel, 50 random] j.w. Bandler, M.A. Ismail, J.E. Rayas-Sanchez and Q.J.
test base'pOintS with uniform statistical distribution WithinZhang, “Neuromode”ng of microwave circuits exp|0iting
the region of interest are generated using a frequency step §face mapping technologyEEE Trans. Microwave Theory

2 GHz (1050 test samples). Following a star distribution fofrech., vol. 47, 1999, pp. 2417-2427.

the learning points [1], only 7 base points are used fof2] em Version 4.0bSonnet Software, Inc., 1020 Seventh
learning (147 learning samples). North Street, Suite 210, Liverpool, NY 13088, 1997.
Gupta’s model is taken as the “coarse” model [1]. Fig. 143] NeuroModeler Version 1.2b, Prof. Q.J. Zhang, Dept. of
illustrates the FSMN neuromodeling strategy for theElectronics, Carleton University, 1125 Colonel By Drive,
microstrip bend, which was implemented usingOttawa, Ontario, Canada, K1S 5B6, 1999.

NeuroModeler [3] as shown in Fig. 1b. The FSMN model [4] ADS Version 1.1, Agilent Technologies, 1400
as implemented ilNeuroModeler consists of a total of 6 Fountaingrove Parkway, Santa Rosa, CA 95403-1799.

Page 1



Micronet Annual Workshop 2000

gg\!isual Editor For Meural Hetwork Structure: Bend new

File Edit Yiew Template

FlBend_new-

Frequency Space Mapped MNeuromode! (FShMN)
of a Microstrip Right Angle Bend

rs11iS11r3211521

Gupta’'s model
f Y RC R
c LC =Ry
ANN formulas [—> Iu_mpgd >
circuit
XC
@

YWV H epsr freq

arning: Applet Window

(b)
Fig. 1. Frequency Space-Mapped Neuromodel (FSMN) of a microstrip right angle bend:
(a) strategy, (b) implementation in NeuroModeler.
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(c) (d)
Fig. 2. Learning and testing errors of the FSMN model after training: (a) histogram of learning errors,
(b) histogram of testing errors, (c) correlation to learning data, and (d) correlation to testing data.
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