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Artificial Neural Networks (ANN) in Modeling

Artificial Neural Networks are suitable in modeling high-
dimensional and highly nonlinear problems

ANN models are computationally efficient and can be more
accurate than empirical models

multilayer feedforward networks can approximate any
measurable function to any desired level of accuracy, provided a
deterministic relationship between input and target exists

(White et al., 1992)

ANNSs that are too small cannot approximate the desired input-
output relationship

ANNSs with too many internal parameters perform correctly in
the learning set, but give poor generalization ability

ANNSs are suitable models for microwave circuit optimization
and statistical design (Zaabab, Zhang and Nakhla, 1995, Gupta
et al., 1996, Burrascano and Mongiardo, 1998, 1999)

Space Mapping-based neuromodeling techniques significantly
decrease the number of EM simulations needed for training
(Bandler et al., 1999)
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Conventional Neuromodeling of Microwave Components
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many learning samples are usually needed to ensure model
accuracy

the number of learning samples needed to approximate a
function grows exponentially with the ratio of the
dimensionality to the function’s degree of smoothness

(Stone, 1982)

even with sufficient training data, the reliability of MLPs for
extrapolation may be very poor
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The Aim of Space Mapping
(Bandler et al., 1994-)
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Neural Space Mapping
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Space Mapped Neuromodeling (SMN) Concept

freq R

—»"  fine f

—>
X, model

!

coarse | R zRf

C
model i
once the ANN is trained
SMN model
X X R =R
f ol ann 26, coarse | R = Ry
model
freq )

00-05-6



Simulation Optimization Systems Research Laboratory
McMaster University

Frequency-Dependent Space Mapped Neuromodeling
(FDSMN) Concept
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Frequency Space Mapped Neuromodeling (FSMN) Concept
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Frequency Mapped Neuromodeling (FMN) Concept
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Frequency Partial-Space Mapped Neuromodeling
(FPSMN) Concept
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Training the ANN

the neuromapping can be found by solving the optimization
problem

. T T T
min H e, e - ¢ 1’ H
W

w contains the internal parameters of the ANN (weights, bias,
etc.) selected as optimization variables

| is the total number of learning samples

ek is the error vector given by

for SMN
e = R (Xy,, freq;) — Ro(X,, freq;)
XC :P(Xfl)
for FDSMN
e, = Ry (Xy,, freq;) — Ry(x,, freq;)
X, =P (X, freq;)
for FSMN

€ = Rf(xfi' freqj)_ Rc(xc' fc)
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Training the ANN (continued)
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Starting Point and Learning Samples

we chose a unit mapping (Xc = X and f. =~ freq) as the starting
point for the optimization problem

to keep a reduced set of learning data samples, we consider an n-
dimensional star distribution for the learning base points
(Bandler et al., 1989)

the number of learning base points for a microwave circuit with
n design parameters is B, =2n + 1
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Microstrip Right Angle Bend

region of interest
20mil <W < 30mil
8mil <H < 16mil
8 < &< 10
1GHz <freq < 41GHz
“coarse” model: Gupta model (Gupta, Garg and Bahl, 1979)
“fine” model: Sonnet’s em™

learning set: 7 base points with “star” distribution

testing set: 50 random base points in the region of interest
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Microstrip Right Angle Bend Response Errors

comparison before neuromodeling between em™ and Gupta
model at 50 random test points
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FSMN Model for the Right Angle Bend (3LP:4-8-4)

strategy implemented in NeuroModeler
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FSMN Model for the Right Angle Bend (3LP:4-8-4)

implementation in NeuroModeler Version 1.2b (1999)

Egj'?'isual Editor For Meural Network Structure: Bend_new
File Edit Yiew Template

[~]Bend_new

Frequency Space Mapped Neuromodel (FShAMN)
of a Microstrip Right Angle BEend

FST11511 15211521

W H epsr frag

I'»-\farning: Applet Window
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Implementation in NeuroModeler

layer one, in green, has the input parameters of the
neuromapping (W, H, &, and freq) scaled to +1

layer two corresponds to the hidden layer of the ANN
implementing the mapping (8 hidden neurons with sigmoid non-
linearities)

layer three is linear and contains the coarse design parameters X.
and the mapped frequency f. before de-scaling

layer four de-scales the parameters

Gupta’s formulas to calculate L and C are programmed as the
internal analytical functions of the fifth hidden layer, using the
built-in MultiSymbolicFixed function

the output layer, in blue, contains a simple internal circuit
simulator that computes the real and imaginary parts of Si1 and
S»1 for the lumped LC equivalent circuit (this layer uses the
built-in CktSimulatorPS function)
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FSMN Model Results for the Right Angle Bend

errors in the learning set after training (w.r.t. em™)

35
30 -
D
?8125— -
< 20 i
[7p]
15t l
=
& 10f 1
D
5_ .
0
O 01 02 03 04 05 06 07 08 09 1
neuromodel error (%)
1 . M
e
g o5 " -
o
(@)}
= ]
c 9
S
= * 4+ rS11
-0.5¢ iS11| 1
+ 4+ rS21
+ 4+ iS21
_1 1 1 1

1 -08 -06 -04 -02 0 02 04 06 08 1
neuromodel response

00-05-19



Simulation Optimization Systems Research Laboratory
McMaster University

FSMN Model Results for the Right Angle Bend

errors in the testing set after training (w.r.t. em™)
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FSMN Model Results for the Right Angle Bend

comparison between em™ and the FSMN model
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Conclusions

we present novel realizations of Space Mapping based
neuromodels of practical passive microwave components using
available software

five powerful SM based neuromodeling techniques are
described

these techniques
exploit the vast set of empirical models already available
decrease the fine model evaluations needed for training
improve generalization ability
reduce complexity of the ANN topology
w.r.t. the classical neuromodeling approach

frequency-sensitive neuromappings expand the usefulness of
empirical quasi-static models

an SM based neuromodel of a microstrip right angle bend is
implemented using NeuroModeler Version 1.2b (1999)

this model can be entered into Agilent ADS Version 1.1 (1999)
as a library component through an ADS plugin module
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