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ABSTRACT  

We propose, for the first time, Neural Space
Mapping optimization for EM-based design.
It exploits our Space Mapping-based neuro-
modeling techniques, avoiding troublesome
parameter extraction.  Simple neuromodels
are trained, without testing points, during
each optimization iteration.  Coarse model
sensitivities are exploited to select suitable fine
model base points for the initial mapping.

INTRODUCTION
Artificial Neural Networks (ANNs) are suitable
models for microwave circuit yield optimization
and statistical design.  Neuromodels are compu-
tationally much more efficient than EM models.
Once they are trained with reliable learning data,
obtained from a “fine” model by either EM
simulation or by measurement, the neuromodels
can be used for efficient and accurate opti-
mization within the region of training.  This has
been the conventional approach to microwave
optimization using ANNs [1].  The principal
drawback of this approach is the cost of
generating sufficient learning samples, since the
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fine model must be evaluated for many combi-
nations of different values of input parameters
over a large region.  Additionally, the extrapo-
lation ability of neuromodels is poor, making
unreliable any solution predicted outside the
training region.  Introducing knowledge, as in
[2], can alleviate these limitations.

A powerful new method for optimization of
microwave circuits based on Space Mapping
(SM) technology and Artificial Neural Networks
(ANN) is presented.  An innovative strategy is
proposed to exploit our SM-based neuromode-
ling techniques [3] in an efficient Neural Space
Mapping  (NSM) optimization algorithm, inclu-
ding frequency.  A “coarse” or empirical model
is used not only as source of knowledge that
reduces the amount of learning data and
improves the generalization performance, but
also as a means to select the initial learning base
points through sensitivity analysis.  A novel
procedure that does not require parameter
extraction to predict the next point is presented.
Huber optimization is used to train the SM-based
neuromodels at each iteration.  The SM-based
neuromodels are developed without using testing
points: their generalization performance is con-
trolled by gradually increasing their complexity
starting with a 3-layer perceptron with 0 hidden
neurons.  NSM optimization is illustrated by an
HTS microstrip filter.

NEURAL SPACE MAPPING (NSM)
OPTIMIZATION: AN OVERVIEW

We start by finding the optimal solution xc
* that

yields the desired response using the coarse
model.  We select 2n additional points following
an n-dimensional star distribution [3] centered at
xc

*, where n is the number of design parameters



(xc, xf ∈ ℜn).  The percentage of deviation from
xc

* for each design parameter is determined
according to the coarse model sensitivity.  The
larger the sensitivity of the coarse model
response w.r.t. a certain parameter, the smaller
the percentage of variation of that parameter.
We assume that the coarse model sensitivity is
similar to that one of the fine model.

The fine model response Rf  at the optimal coarse
solution xc

* is then calculated.  If Rf is approxi-
mately equal to the desired response, the algo-
rithm ends, otherwise we develop an SM-based
neuromodel over the 2n+1 fine model points.

Once an SM-based neuromodel with small
learning errors is available, we use it as an
improved coarse model, optimizing its para-
meters to generate the desired response.  The
solution to this problem becomes the next point
in the fine model parameter space, and it is
included in the learning set.

We calculate the fine model response at the new
point, and compare it with the desired response.
If it is still different, we re-train the SM-based
neuromodel over the extended set of learning
samples and the algorithm continues.  If not, the
algorithm terminates.

COARSE OPTIMIZATION
During the coarse optimization phase of NFSM
optimization, we want to find the optimal coarse
model solution xc

* that generates the desired
response over the frequency range of interest.
The vector of coarse model responses Rc might
contain m different responses (for example,
S11 and S21),
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where each individual response has been
sampled at Fp frequency points,
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The desired response R* is expressed in terms of
specifications.  The problem of circuit design
using the coarse model can be formulated as [4]

))((minarg*
cc

c
c U xRx

x
= (3)

where U is a suitable objective function.  For
example, U could be a minimax objective func-
tion expressed in terms of upper and lower
specifications for each response and frequency
sample.  A rich collection of objective functions,
for different design constraints, is in [4].

TRAINING THE SM-BASED
NEUROMODEL DURING NSM

OPTIMIZATION
At the ith iteration, we find the simplest neuro-
mapping P 

(i) such that the coarse model using
that mapping approximates the fine model at all
the learning points.  This is realized by solving
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where 2n + i is the number of training base
points and Fp is the number of frequency points
per frequency sweep.  The total number of
learning samples at the ith iteration is s = (2n + i)
Fp.

(5b) is the input-output relationship of the ANN
that implements the mapping at the ith iteration.
Vector w contains the internal parameters
(weights, bias, etc.) of the ANN.  The paradigm
chosen to implement P 

(i) is a 3-layer perceptron.

All the SM-based neuromodeling techniques
proposed in [3] can be exploited to solve (4).
The starting point for the first training is a unit
mapping, i.e., P (0) (xf

(l), ωj, wu) = [xf
(l)T ωj]

T, for j
= 1,…, Fp and l = 1,…, 2n+1, where wu contains
the internal parameters of the ANN for a unit
mapping.  The SM-based neuromodel is trained
in the next iterations using the previous mapping



as the starting point.

The complexity of the ANN is gradually in-
creased according to the learning error εL,
starting with a linear mapping (3-layer percep-
tron with 0 hidden neurons).  In other words, we
use the simplest ANN that yields an acceptable
learning error, defined as

TT
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where es is obtained from (5) using the current
optimal values for the ANN free parameters w*.

SM-BASED NEUROMODEL
OPTIMIZATION

At the ith iteration of NSM optimization, we use
an SM-based neuromodel with small learning
error as an improved coarse model, optimizing
its parameters to generate the desired response.
We denote the SM-based neuromodel response
as RSMBN, defined as
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and j defined in (5c).  The solution to the
following optimization problem becomes the
next iterate:
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If an SMN neuromapping is used to implement
)(iP , the next iterate can be obtained in a simpler

manner
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NSM ALGORITHM

Step 0. Find *
cx  by solving (3).

Step 1. Choose )1(
fx ,…, )2( n

fx  following a star

distribution around *
cx .

Step 2. Initialize 1=i , *)2(
c
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Step 5. Find w* by solving (4).
Step 6. Calculate εL using (6).
Step 7. If minεε >L , increase the complexity of

)(iP  and go to Step 5.
Step 8. If an SM neuromapping is used to

implement )(iP , solve (11), otherwise
solve (10).

Step 9. Set 1+= ii ; go to Step 3.

HTS MICROSTRIP FILTER
We apply NSM optimization to a high-
temperature superconducting (HTS) quarter-
wave parallel coupled-line microstrip filter.  L1,
L2 and L3 are the lengths of the parallel coupled-
line sections and S1, S2 and S3 are the gaps
between the sections.  The width W is the same
for all the sections as well as for the input and
output microstrip lines, of length L0.  A
lanthanum aluminate substrate with thickness H
and dielectric constant εr is used.

The specifications are |S21| ≥ 0.95 in the passband
and |S21| ≤ 0.05 in the stopband, where the
stopband includes frequencies below 3.967 GHz
and above 4.099 GHz, and the passband lies in
the range [4.008GHz, 4.058GHz].  The design
parameters are xf = [L1 L2 L3 S1 S2 S3] 

T.  We take
L0 = 50 mil, H = 20 mil, W = 7 mil, εr = 23.425,
loss tangent = 3×10−5; the metalization is
considered lossless.



Sonnet’s em driven by Empipe was
employed as the fine model, using a high-
resolution grid.  OSA90/hope built-in linear
elements MSL (microstrip line), MSCL (two-
conductor symmetrical coupled microstrip lines)
and OPEN (open circuit) connected by circuit
theory over the same MSUB (microstrip
substrate definition) are taken as the “coarse”
model.

The coarse and fine model responses at the
optimal coarse model solution xc

* are shown in
Fig. 1(a).  The initial 2n+1 points are chosen by
performing sensitivity analysis on the coarse
model: 3% deviation from xc

* for L1, L2, and L3

is used, while 20% is used for S1, S2, and S3.
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Fig. 1.  Responses from Sonnet’s em (•) compared with
            desired response (−): (a) at the starting point, (b)
            at the point predicted by the first NSM iteration.

The final mapping follows a FPSM approach [3]
using a 3-layer perceptron with 7 inputs (6
design parameters and the frequency), 5 hidden

neurons, and 3 output neurons (ω, L1, and S1).

The next point predicted by optimizing the
coarse model with the mapping found matches
the desired response with excellent accuracy, as
seen in Fig. 1(b), where a fine frequency sweep
is used. The NFSM solution satisfies the
specifications.  The HTS filter is optimized in
only one NSM iteration.

CONCLUSIONS
We propose EM optimization exploiting Space
Mapping technology and Artificial Neural Net-
works.  Our Neural Space Mapping (NSM) opti-
mization algorithm exploits SM-based neuromo-
deling techniques to efficiently approximate
mappings from the fine to the coarse input space.
NSM does not require parameter extraction to
predict the next point.  An initial mapping is
established by performing upfront fine model
analysis at a number of base points.  Coarse
model sensitivities are exploited to select the
base points.  Huber optimization trains simple
SM-based neuromodels at each iteration without
using testing points.  Their generalization perfor-
mance is controlled by gradually increasing their
complexity starting with a 3-layer perceptron
with 0 hidden neurons.  An HTS filter is opti-
mized in only one NSM iteration.
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