NEURAL SPACE MAPPING OPTIMIZATION FOR EM-BASED DESIGN

Mohamed H. Bakr, Student Member, |EEE, John W. Bandler, Fellow, |EEE,
Mostafa A. Ismail, Sudent Member, IEEE, José E. Rayas-Sanch&enior Member, |EEE,
and Qi-Jun Zhangsenior Member, |IEEE

Keywords neural network applications, space mapping, optimization methods, design automation,
EM optimization, neural space mapping, microwave circuits, microstrip filters, neural
modeling

Abstract We propose, for the first time, Neural Space Mapping (NSM) optimization for EM-based

design. NSM optimization exploits our Space Mapping-based neuromodeling techniques to efficiently
approximate the mapping. A novel procedure that does not require troublesome parameter extraction to
predict the next point is proposed. The initial mapping is established by performing upfront fine model
analyses at a reduced number of base points. Coarse model sensitivities are exploited to select those base
points. Huber optimization is used to train, without testing points, simple SM-based neuromodels at each
NSM iteration. The technique is illustrated by a high-temperature superconducting (HTS) quarterjwave
parallel coupled-line microstrip filter and a bandstop microstrip filter with quarter-wave resonant ppen
stubs.
I. INTRODUCTION
Artificial Neural Networks (ANNSs) are suitable models for microwave circuit yield optimization

and statistical design [1, 2]. Neuromodels are computationally much more efficient than EM or physical

This work was supported in part by the Natural Sciences and Engineering Research Council of
Canada under Grants OGP0007239 and STP0201832, and through the Micronet Network of Centres of
Excellence. J.E. Rayas-Sanchez is funded by CONACYT (Consejo Nacional de Ciencia y Tecnologia,
Mexico), as well as by ITESO (Instituto Tecnolégico y de Estudios Superiores de Occidente, Mexico).
M.H. Bakr is supported by an Ontario Graduate Scholarship.

M.H. Bakr, J.W. Bandler, M.A. Ismail and J.E. Rayas-Sanchez are with the Simulation
Optimization Systems Research Laboratory and the Department of Electrical and Computer Engineering,
McMaster University, Hamilton, Ontario, Canada L8S 4K1.

J.W. Bandler is also with Bandler Corporation, P.O. Box 8083, Dundas, Ontario, Canada L9H
5E7.

Q.J. Zhang is with the Department of Electronics, Carleton University, 1125 Colonel By Drive,
Ottawa, Canada K1S 5B6.



models and can be more accurate than empirical, physics-based models. Once they are trained with
reliable learning data, obtained by either EM simulation or by measurement, the neuromodel can be used
for efficient and accurate optimization within the region of training. This has been the conventional
approach to optimization of microwave structures using ANNs [3].

The principal drawback of this ANN optimization approach is the cost of generating sufficient
learning samples, since the simulations/measurements must be performed for many combinations of
different values of geometrical, material, process and input signal parameters over a large region.
Additionally, it iswell known that the extrapolation ability of neuromodelsis poor, making unreliable any
solution predicted outside the training region. Introducing knowledge, as in [4], can dleviate these
limitations.

A powerful new method for optimization of microwave circuits based on Space Mapping (SM)
technology and Artificial Neural Networks (ANN) is presented. An innovative strategy is proposed to
exploit the SM-based neuromodeling techniques [5] in an efficient Neural Space Mapping (NSM)
optimization algorithm, including frequency. NSM requires a reduced set of upfront learning base points.
A “coarse” or empirical model is used not only as source of knowledge that reduces the amount of
learning data and improves the generalization performance of the SM-based neuromodel, but also as a
means to select the initial learning base points through sensitivity analysis. A novel procedure that does
not require troublesome parameter extraction to predict the next point is presented. Huber optimization is
used to train the SM-based neuromodels at each iteration. The SM-based neuromodels are developed
without using testing points: their generalization performance is controlled by gradually increasing their
complexity starting with a 3-layer perceptron with O hidden neurons. NSM optimization is illustrated by
a high-temperature superconducting (HTS) quarter-wave parallel coupled-line microstrip filter ahd a

bandstop microstrip filter with quarter-wave resonant open stubs.

1. SPACE MAPPING CONCEPT INCLUDING FREQUENCY

Space Mapping (SM) is a powerful concept for circuit design and optimization that combine$ the




computational efficiency of “coarse” models with the accuracy of “fine” models. The coarse models

are

typically equivalent circuit models, which are computationally very efficient but often have a limited

validity range for their parameters, beyond which the simulation results may become inaccurate. Q

n the

other hand, fine models can be provided by an electromagnetic (EM) simulator, or even by direct

measurements: they are very accurate but CPU intensive. SM establishes a mathematical link be

tween

the coarse and the fine models. It directs the bulk of CPU intensive evaluations to the coarse njodel,

while preserving the accuracy and confidence offered by the fine model. The SM technique
originally developed by Bandlet al. [6].

In the Space Mapping technique with frequency dependence, the operating fregusnalgo
included in the mapping function. This allows us to simulate the coarse model at a different frequ
We.

Let the vectorsx, and x; represent the design parameters of the coarse and fine mod
respectively, andR.(X. ,at) andR;(x; ,&) the corresponding model responses (for exanipleand Ry
might contain the real and imaginary part$gj. R.is much faster to calculate but less accurate Raan

The aim of Space Mapping optimization, including frequency, is to find an appropriate mapy

P from the fine model input space to the coarse model input space
X, 0O
@f 0= P(X;, @) (1)
e O]

such that

R.(X;, @) = Ry (X, w) 2)
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Once a mappin® valid in the region of interest is found, the coarse model can be used for fast

and accurate simulations in that region.




[11. NEURAL SPACE MAPPING (NSM) OPTIMIZATION: AN OVERVIEW

Fig. 1 shows the flow diagram of NSM optimization. Here we explain the overall operation of
NSM optimization; a detailed description of the main blocksis presented in the following sections.

We start by finding the optimal solution x. that yields the desired response using the coarse
model. We select 2n additional points following an n-dimensional star distribution [5, 7] centered at x. ,
as shown in Fig. 2, where n is the number of design parameters (., X; 0 O"). The percentage of deviation
from x. for each design parameter is determined according to the coarse model sensitivities. The larger
the sengitivity of the coarse mode response w.r.t. a certain parameter, the smaller the percentage of
variation of that parameter. We assume that the coarse model sensitivities are smilar to those of the fine
model.

The fine model response R; at the optimal coarse model solution X, is then calculated. If R is
approximately equal to the desired response, the dgorithm ends, otherwise we develop an SM-based
neuromodel over the 2n+1 fine model points.

Once an SM-based neuromodel with small learning errors is available, we use it as an improved
coarse model, optimizing its parameters to generate the desired response. The solution to this
optimization problem becomes the next point in the fine model parameter space, and it isincluded in the
learning set.

We calculate the fine model response at the new point, and compare it with the desired response.
If itis still different, we re-train the SM-based neuromodel over the extended set of learning samples and

the algorithm continues. If not, the algorithm terminates.

V. COARSE OPTIMIZATION
During the coarse optimization phase of NSM optimization, we want to find the optimal coarse
model solution x. that generates the desired response over the frequency range of interest. The vector of

coarse model responses R, might contain m different responses of the circuit,



Ro(Xo) =[Re(x.) T .. RI(x)'1T (3)
where each individual response has been sampled at F, frequency points,
RE(X) = [REOG,@) o RE(X, @ )T, 1 =1m @
The desired response R’ is expressed in terms of specifications. The problem of circuit design
using the coarse model can be formulated as[§]

X, =argminU(R;(x.)) (5)

where U is a suitable objective function. For example, U could be a minimax objective function
expressed in terms of upper and lower specifications for each response and frequency sample. A rich

collection of objective functions, for different design constraints, is formulated by Bandler et al. in [8].

V. TRAINING THE SM-BASED NEUROMODEL DURING NSM OPTIMIZATION
At the ith iteration, we want to find the simplest neuromapping P such that the coarse model
using that mapping approximates the fine model at al the learning points. Thisis realized by solving the

optimization problem

W*:argmviln H[ eST ]T“ (6)
with
e =Ry (Xf(l)'wj) - Rc(xcj(l)'wcj) ' (79)
ng

Ekcj 0=PV(x;V, w;, W) (7b)

Ewcj E
j=1...,F, (7¢)
| =1,....2n+i (7d)
s=j+F, (- (7e)

where 2n + i is the number of training base points for the input design parameters and F, is the number of



frequency points per frequency sweep. It is seen that the total number of learning samples at the ith
iterationiss=(2n+1i) Fp.

(7b) is the input-output relationship of the ANN that implements the mapping at the ith iteration.
Vector w contains the internal parameters (weights, bias, etc.) of the ANN. The paradigm chosen to
implement P is a 3-layer perceptron.

All the SM-based neuromodeling techniques proposed in [5] can be exploited to efficiently solve
(6). In the Space Mapped Neuromodeling (SMN) approach only the design parameters are mapped, as

illustrated in Fig. 3, and both models use the same frequency:

ogo 0 (y. O WO
Ekcj = P(I)(Xf(l),a)j,W)ZEpSVl (Xf ’W)D @®
B%, 8 | w; g

In the Frequency-Dependent Space Mapped Neuromodeling (FDSMN) approach, illustrated in
Fig. 4, both coarse and fine models are simulated at the same frequency, but the mapping from the fine to

the coarse parameter space is dependent on the frequency:

O, OO0, PO (. g wO
0% [= P(')(Xf(l),a)j,w)=D Fosv (X1 i) )D )

The Frequency Space Mapped Neuromodeling (FSMN) technique (see Fig. 5) establishes a
mapping not only for the design parameters but also for the frequency variable, such that the coarse model

issimulated at a different frequency to match the fine model response:

k. 00O . A
0% 0=PO(x,V ;W) =|PL, (x;,0;, W) (10)
Ewcj E
For those cases where the shapes of the fine and coarse model responses are nearly identical but
shifted in frequency, the Frequency Mapped Neuromodeling technique (see Fig. 6) simulates the coarse
model with the same physical parameters used by the fine model, but at a different frequency to aign

both responses:




k. OO . O x. 0 O
0% [= P(I)(Xf(l),WJ,W):D f

S K 0x, &

U
vw]vw)a

Finally, the Frequency Partial-Space Mapped Neuromodeing (FPSMN) technique maps only
some of the design parameters and the frequency (see Fig. 7), making an even more efficient use of the

implicit knowledge in the coarse model:

Cj

.00
ng %f(l)m 0 O 0
0% 0=POx,", 0, w) = Kk} O=0 O (12)
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Note that the “design” parameters of the coarse model do not change with frequency only in|the

SMN and FM neuromappings.

The starting point for the first training process is a unit mapping,A.8.(x", &, w,) = [x""
cq]T, forj=1,...,F,andl = 1,..., 2+1, wherew, contains the internal parameters of the ANN that give a
unit mapping. The SM-based neuromodel is trained in the next iterations using the previous mapping as
the starting point.

The complexity of the ANN (the number of hidden neurons and the SM-based neuromodeling
technique) is gradually increased according to the learning grrstarting with a linear mapping (3-
layer perceptron with O hidden neurons). In other words, we use the simplest ANN that yields an

acceptable learning errar, defined as
e =l e 1] (13)

whereg, is obtained from (7) using the current optimal values for the ANN internal parameters
In our implementation, the neuromapping for the first iteration is approximated using the FI\I’IN
technique, so that any possible severe misalignment in frequency between the coarse and the fine jnodel
responses is first alleviated. Then, the physical parameters are gradually mapped, following a FPEMN
technique.

Linear Adaptive Frequency-Space Mapping (LAFSM) is a special case of NSM optimizatign,




corresponding to the situation when the number of hidden neurons of the ANN is zero at all iterations.

V1. SM-BASED NEUROMODEL OPTIMIZATION
At the ith iteration of NSM optimization, we use an SM-based neuromodel with small learning
error as an improved coarse model, optimizing its parameters to generate the desired response. We

denote the SM-based neuromodel response as Rgyen, defined as

RSMBN(Xf):[R%NIBN(Xf)T RQ\/IBN(Xf)T]T (14)

where
Raven (X¢) = [RE(Xer, @) oo RE(Xee, @ )] T, 1 =1,.,m (15)

with
X0 pox, o w) (16)
¢
i=1...F, (7)
The solution to the following optimization problem becomes the next iterate:

X" = arg n)1(ifn U (Raien (X)) (18)

with U defined asin (5). If an SMN neuromapping is used to implement P (see Fig. 3), the next iterate

can be obtained in a simpler manner by solving

Xf(2n+i+1) = arg rg](inHPs(liv% (Xf,W*)—X; (19)
f

VIlI. NSM ALGORITHM

Step O. Find x_ by solving (5).
Step 1. Choose x;?,..., x;*” following a star distribution arouns; .
Step 2. Initializei =1, x, ™ = x_ .



Step 3. Stop if HRf(xf@””’,wj) - RC(X;,a)j)HSER, j=1..,F,.

Step 4. Initialize P = P where
P<0>(xf<",wj,wu):Ekf(l)g, i=1..,F,; I=1..2n+i.
B¥ B
Step 5. Findw by solving (6).
Step 6. Calculate & using (13).
Step 7. If &> &, increase the complexity of P® and go to Step 5.
Step 8. If an SM neuromapping is used to implement P® | solve (19),

otherwise solve (18).

Step 9. Seti=i+1;gotoStep3.

VIIl. HTSMICROSTRIPFILTER

We apply NSM optimization to a high-temperature superconducting (HTS) quarter-wave parallel
coupled-line microstrip filter [9], illustrated in Fig. 8. L, L, and L3 are the lengths of the parallel coupled-
line sections and S, $; and S are the gaps between the sections. The width W is the same for all the
sections as well as for the input and output microstrip lines, of length Ly,. A lanthanum aluminate
substrate with thickness H and dielectric constant & is used.

The specifications are |S;| = 0.95 in the passband and |S;;| < 0.05 in the stopband, where the
stopband includes frequencies below 3.967 GHz and above 4.099 GHz, and the passband lies in the range
[4.008GHz, 4.058GHz]. The design parametersarex;=[L; L,L: S S S] . Wetake Lo =50 mil, H = 20
mil, W = 7 mil, & = 23.425, loss tangent = 3x10"; the metalization is considered |ossless.

Sonnet’sem] [10] driven by Empipel [11] was employed as the fine model, using a high-
resolution grid with a Imdlmil cell size. OSA90/hofpé [12] built-in linear elements MSL (microstrip

line), MSCL (two-conductor symmetrical coupled microstrip lines) and OPEN (open circuit) connected



by circuit theory over the same MSUB (microstrip substrate definition) are taken as the “coarse” model.

The following optimal coarse model solution is found, as in [3]= [188.33 197.98 188.58
21.97 99.12 111.67](in mils). The coarse and fine model responses at the optimal coarse solution| are
shown in Fig. 9.

The initial 2r+1 points are chosen by performing sensitivity analysis on the coarse model: a 3%
deviation fromx, for Ly, L,, andLs is used, while a 20% is used @ S, andS;. The corresponding
fine and coarse model responses at these 13 star-distributed learning points are shown in Fig. 10.

Fig. 11 shows the evolution of the learning errors at thel2points as we increase the
complexity of the neuromapping during the first iteration. It is seen that mapping the frequency hps a
dramatic effect on the alignment of the responses, and a simple FPSM neuromapping is needed. The final
mapping is implemented with a 3-layer perceptron with 7 inputs (6 design parameters and the frequency),
5 hidden neurons, and 3 output neurand ¢, ands,).

As indicated in Step 8, we calculate the next point by optimizing the coarse model with fthe
mapping found. The next point predictedi§® = [185.37 195.01 184.24 21.04 86.36 9173@h
mils), which matches the desired response with excellent accuracy, as seen in Fig. 12. As a final test,
both the FPSMN model and the fine model are simulated at the NSM solpfidrusing a very fine
frequency sweep, with a frequency step of 0.005GHz. The NSM solution satisfies the specifications, as
shown in Fig. 13. A detailed illustration of the passband using an even finer frequency sweep is sholvn in

Fig. 14. The HTS filter is optimized in only one NSM iteration.

IX. BANDSTOP MICROSTRIP FILTER WITH OPEN STUBS
NSM optimization is applied to a bandstop microstrip filter with quarter-wave resonant ogen
stubs, illustrated in Fig. 15L,, L, are the open stub lengths ang, W, the corresponding widths. An

alumina substrate with thickneldls= 25 mil, widthW, = 25 mil and dielectric constagt= 9.4 is used for

a 50Q feeding line.

10



The specifications are |S;| < 0.01 in the stopband and |Sx| = 0.9 in the passband, where the
stopband lies between 9.3 GHz and 10.7 GHz, and the passband includes frequencies below 8 GHz and
above 12 GHz. The design parameters are x; = [Wy W, Lo Ly L] .

Sonnet'semd [10] driven by Empipg [11] was employed as the fine model, using a high-

resolution grid with a 1nWlmil cell size. As coarse model, we use simple transmission lines for

modeling each microstrip section (see Fig. 16) and classical formulas [14] to calculate the characte
impedance and the effective dielectric constant of each transmission line. It is ségn=that+ Wy/2,

La =Ly + Wo/2, andLy = Lo + Wi/2 + Wo/2. We use OSA90/hopk [12] built-in transmission line
elements TRL.

The following optimal coarse model solution is foundLlfgr_,, andL, of quarter-wave lengths at
10 GHz:x. =[6.00 9.01 106.45 110.15 108.81jn mils). The coarse and fine model responses at th
optimal coarse solution are shown in Fig. 17.

The initial 2v+1 points are chosen by performing sensitivity analysis on the coarse model: a 5
deviation fromx. for Wy, W,, and L, is used, while a 15% is used fbf, andL,. A simple FM
neuromapping (see Fig. 6) with 2 hidden neurons (3LP:6e3-Wyas used to match the responses at the
learning base points. The FM neuromodel and the fine model responses at the optimal coarse soluti
shown in Fig. 18. Optimizing the FM neuromodel to satisfy the specifications (Step 8 of the N
algorithm), the next iterate is"? = [6.54 16.95 91.26 113.30 120.7Z]n mils). The coarse and fine
model responses at this point are shown in Fig. 19.

We performed a second NSM iteratiow; ™ is included in the learning base points. Now a
FPSM neuromapping with 3 hidden neurons is needed to matcm+2epdints: onlyw andW, are
mapped (3LP:6-3-2u, W,). Fig. 20 shows the FPSM neuromodel and the fine model respons&8.at
Optimizing the FPSM neuromodel, the next iteratg 1§ = [5.92 13.54 83.34 114.14 124.81(in
mils). The coarse and fine model responses & are shown in Fig. 21. As final test, using a fine

frequency sweep, we show in Fig. 22 the fine model respons&-4iand the optimal coarse response.
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The bandstop microstrip filter is optimized in two NSM iterations.

X. CONCLUSIONS

We present an innovative algorithm for EM optimization based on Space Mapping technology
and Artificial Neural Networks. Neural Space Mapping (NSM) optimization exploits our SM-based
neuromodeling techniques to efficiently approximate the mapping from the fine to the coarse input space.
NSM does not require parameter extraction to predict the next point. Aninitial mapping is established by
performing upfront fine model anaysis a a reduced number of base points. The coarse model
senditivities are exploited to select those base points. Huber optimization is used to train smple SM-
based neuromodels at each iteration. The SM-based neuromodels are developed without using testing
points: their generalization performance is controlled by gradually increasing their complexity starting
with a 3-layer perceptron with O hidden neurons. A high-temperature superconducting (HTS) quarter-
wave paralel coupled-line microgtrip filter and a bandstop microstrip filter with quarter-wave resonant
open stubsiillustrate our optimization technique.
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COARSE OPTIMIZATION: find the
optimal coarse model solution x_* that
generates the desired response R*

R(x.,) = R

v

Form alearning set with B_ = 2n+1 base
points, by selecting 2n adoﬁ tional points

around xc*, following a star distribution

v

Choose the coarse optimal solution as
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v
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SM BASED NEUROMODELING:
Find the simplest neuromapping P
such that

R (%", @)= R(P (X", &)

|=1..B andj=1..,F

SMBNM OPTIMIZATION:
Find the optimal x, such that

Raven (%) = R(P () = R

j

Fig. 1. Neura Frequency Space Mapping (NFSM) Optimization.
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Fig. 2. Three-dimensional star distribution for theinitial base points.
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Fig. 3. Space Mapped neuromapping.
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Fig. 4. Frequency-Dependent Space Mapped neuromapping.
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Fig. 5. Frequency Space Mapped neuromapping.
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Fig. 6. Frequency Mapped neuromapping.
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Fig. 7. Frequency Partial-Space Mapped neuromapping.
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Fig. 8.

HTS quarter-wave parallel coupled-line microstrip filter.
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frequency sweep, at the next point predicted after the first NSM iteration.

Fig. 15. Bandstop microstrip filter with quarter-wave resonant open stubs.
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Fig. 17. Coarse and fine model responses at the optimal coarse
solution: OSA90/hopel] (-) and emU ().
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Fig. 18. FM (3LP:6-2-1, @) neuromodel (=) and the fine model (¢)
responses at the optimal coarse solution.
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Fig. 19. Coarse (-) and fine (+) model responses at the next
point predicted by the first NSM iteration.
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Fig. 20. FPSM (3LP:6-3-2, w, W,) neuromodel (=) and the fine model (¢)
responses at the point predicted by the first NSM iteration.
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Fig. 21. Coarse (-) and fine model (») responses at the next
point predicted by the second NSM iteration.
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Fig. 22. Fine model response (*) at the next point predicted by the second NSM
iteration and optimal coarse response (-), using a fine frequency sweep.
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