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Abstract
A powerful new Space Mapping (SM) optimization algorithm is presented.  It draws upon recent developments in both surrogate model-based optimization and modeling of microwave devices.  SM optimization is formulated as a general optimization problem of a surrogate model.  This model is a convex combination of a mapped coarse model and a linearized fine model.  It exploits, in a novel way, a linear frequency-sensitive mapping.  During the optimization iterates, the coarse and fine models are simulated at different sets of frequencies.  This approach is shown to be especially powerful if a significant response shift exists.  The algorithm is illustrated through the design of a capacitively-loaded 10-1 impedance transformer and a Double-Folded Stub (DFS) filter.  A High-Temperature Superconducting (HTS) filter is also designed using decoupled frequency and space mappings. 
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I. INTRODUCTION

In this work we present a novel Space Mapping (SM) algorithm for microwave circuit optimization [1].  It integrates, for the first time, two distinct optimization approaches: SM optimization [2-4] and surrogate model-based optimization [5-7].  Both approaches aim at efficiently optimizing an accurate and time-intensive “fine” model, e.g., a full-wave electromagnetic (EM) simulator.  SM exploits the existence of a less accurate but fast “coarse” model.  It formulates the design problem as a system of nonlinear equations.  On the other hand, surrogate-based optimization, new to the microwave arena, exploits an approximate model in iteratively solving the original design problem.  This model may be a less accurate physically-based model or algebraic model [6].

Our algorithm combines both approaches.  The original design problem is iteratively solved using a surrogate model.  This model is a convex combination of a mapped coarse model and a linearized fine model.  The accuracy of the surrogate model is improved in every iteration using the generated fine model simulations.

Recent developments in Space Mapping-based Neuromodeling (SMN) [8] and Generalized Space Mapping (GSM) modeling [9] exploit frequency-sensitive mappings.  This approach is reported to improve the accuracy of SM-based models.  We integrate this concept, in a novel way, with SM optimization.  In each iteration, a linear frequency-sensitive mapping is exploited in constructing the mapped coarse model.  Here, the coarse and fine models are simulated over different frequency ranges.  This approach handles significant frequency shifts efficiently.

The established frequency-sensitive mapping obtains an estimate of the derivatives of the mapped coarse model responses.  These derivatives are expressed in terms of the coarse model derivatives and the mapping parameters.  We show that this expression is a generalized form for frequency-sensitive mappings of the lemma utilized in [4].  It can be used to approximate the fine model derivatives in the region of interest.  

A number of examples are successfully solved.  They include a capacitively-loaded two-section 10:1 impedance transformer [10], a Double-Folded Stub (DFS) filter [11] and a High Temperature Superconducting (HTS) filter [12].  Decoupled frequency and space mappings are utilized in the optimization of the HTS filter.  This approach shows the feasibility of utilizing different types of frequency-sensitive mappings in the optimization loop. 

II. SPACE MAPPING OPTIMIZATION VS. SURROGATE-BASED OPTIMIZATION
We denote the fine model responses at a point 
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where 
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 is the objective function and 
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 is the optimal fine model design.  Solving (1) using direct optimization methods, e.g. [13], is prohibitive due to the intensive simulation time of the fine model.

SM optimization exploits the existence of a fast but less accurate “coarse” model of the circuit.  We denote by 
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 a coarse model point and the corresponding coarse model response vector, respectively.  The coarse model responses at a frequency 
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The first step in all SM-based optimization algorithms obtains the optimal coarse model design 
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over a region in the parameter space.  SM optimization obtains a space-mapped design 
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where 
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 is approximated through a Parameter Extraction (PE) procedure.

Previous SM optimization algorithms [2-4] solve (4) iteratively.  Let 
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The Trust Region Aggressive Space Mapping (TRASM) algorithm [3] minimizes 
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 using least squares within a trust region.  The ith iteration of the algorithm is given by
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Parameter 
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 is the size of the trust region.  The new iterates are accepted only if they are descent directions for 
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Hybrid Aggressive Space Mapping (HASM) [4] addresses the problem of a poor coarse model.  It adopts a two phase approach.  The first phase exploits a TRASM strategy.  The second phase minimizes 
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 through direct least-squares optimization.  A relationship relates the available mapping to the first-order derivatives of the responses of both models [4].  It is used for switching between the two phases.

Alternatively, an expensive model can be optimized indirectly by using a surrogate model [5-7].  This surrogate model may be a less accurate physics-based model or a polynomial approximation of the fine model [6].  We denote the surrogate model in the ith iteration by 
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 is then validated using fine model simulation.  It is accepted if it improves the fine model objective function.  Otherwise, the accuracy of 
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 should be improved.  Different strategies can be utilized for improving the surrogate model accuracy.  One strategy utilizes only the validation fine model simulations.  Additional fine simulations may be generated to improve the surrogate model in certain directions of the parameter space

III. THE SURROGATE MODEL

In the ith iteration, our algorithm utilizes a surrogate model expressed as a convex combination of a Linearized Fine Model (LFM) and a Mapped Coarse Model (MCM)
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, the surrogate model exploits both approximations.  The LFM part in (8) ensures that the algorithm will work if the coarse model is poor or even wrong.

The MCM 
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where
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The parameters 
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The advantage of utilizing (10) is illustrated by Fig. 1.  It is required to extract the coarse point 
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Fig. 1(a) shows also the coarse model response at the starting point for (11).  The PE optimizer may not have enough information to align the almost disjoint responses.  However, the responses align perfectly if a frequency transformation 
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 is applied to the coarse model frequency axis.  This implies that the two models are simulated at different frequencies.  Fig. 1(b) shows the aligned responses.  It follows that (10) allows another degree of freedom in aligning the coarse and fine models.

Utilizing a frequency sensitive mapping also enables indirect estimation of the fine model derivatives.  Using (9), the Jacobian of the mapped coarse model responses 
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For the case of the linear frequency-sensitive mapping (10), relation (12) becomes
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Formula (13) utilizes only coarse model derivatives in estimating the MCM derivatives.  It defaults to the lemma utilized by the HASM algorithm [4]


[image: image80.wmf]B

x

x

P

J

x

J

)

(

)

(

)

(

)

(

)

(

)

(

))

,

(

),

,

(

(

)

,

(

i

j

k

f

i

j

k

f

i

c

j

k

f

m

P

w

w

w

w

=


(14)

for the case of a linear frequency-insensitive mapping 
[image: image81.wmf]c
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The MCM should approximate the fine model over a region of fine model parameters and frequency.  The mapping parameters are thus obtained through the optimization procedure
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where 
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are checked 
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If the (i(1)th iteration is unsuccessful, the mapped coarse model should be improved.  This is important to guarantee a successful iteration in the ith iteration.  However, no improvement is possible if (17) results in 
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where
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The set 
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.  A similar approach is utilized by the Aggressive Parameter Extraction (APE) [15] algorithm.  These perturbations capture the functional behavior of the fine model within the considered region.  
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IV. THE ALGORITHM

The ith iteration of the algorithm proceeds as follows.  First, the set 
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[image: image107.wmf]h

)

(

i

 is obtained by solving (7), where the surrogate model is given by (8).  Notice that (7) utilizes only coarse model simulations and can be solved using traditional optimization methods.

If the response 
[image: image108.wmf]R

*

c

 is good enough, we may be satisfied with a design for which 
[image: image109.wmf]R

x

R

*

c

f

f

»

)

(

.  In this case, we select U as 
[image: image110.wmf] 

c

f

f

R

x

R

*

)

(

-

.  However, if the optimality of the design is the main concern, U may be selected as the generalized minimax objective function [13].
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The step 
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is thus evaluated at the end of each iteration.  If 
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if 
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 define the prediction error using the MCM and the LFM, respectively.  The update (23) assigns higher weight to the more accurate model.  It should be noted that the linearized fine model starts with low accuracy.  However, Broyden’s update iteratively improves the accuracy of this model.  Our algorithm terminates if n+1 consecutive unsuccessful iterations are carried out or if 
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The algorithm can be summarized by the following steps

Step 1. Given 
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Step 2. Construct 
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Step 3. Apply the optimization procedure (15)-(16) to obtain the mapping parameters.

Step 4. Obtain the suggested step 
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Step 6. Update 
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Step 7. If the stopping criterion is satisfied stop.

Step 8. Set i=i+1 and go to Step 2.

A flowchart of the algorithm is shown in Fig. 4.

V. EXAMPLES

A Capacitively-Loaded 10:1 Impedance Transformer [10]

We consider the design of a capacitively-loaded 10:1 impedance transformer.  The proposed fine and coarse models are shown in Figs. 5 and 6, respectively.  The values of the capacitances that we use are given in Table I.  Design specifications are 

(S11(( 0.50  for  0.5 GHz ( (  (1.5 GHz
(24)

The electrical lengths of the two transmission lines at 1.0 GHz are selected as designable parameters.  The characteristic impedances are kept fixed at the optimal values given in Table II.  Both models make use of the ideal transmission line model available in OSA90/hope [16].  Eleven frequency points are simulated per sweep.  We utilized the real and imaginary parts of S11 in the optimization procedure (15)-(16).  The initial trust region size and extraction radius are 
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, respectively.  The algorithm executed five iterations.  Only the first two are successful.  The total number of fine model simulations is seven.  The initial and final designs are given in Table III.  The corresponding responses are shown in Figs. 7 and 8, respectively.  The final mapping is given by
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The value of U in every iteration is shown in Fig. 9.

A Double-Folded Stub (DFS) Filter [11]

The DFS fine model utilizes Sonnet’s em [17] through Empipe [16] (See Fig. 10).  The coarse model, shown in Fig. 11, exploits the microstrip line and microstrip T-junction models available in OSA90/hope.  The coupling between the folded stubs and the microstrip line is simulated using equivalent capacitors.  The values of these capacitors are determined using Walker’s formulas [18].  Jansen’s microstrip bend model [19] is used to model the folding effect of the stub.

The design specifications are

(S21(( (3 dB  for  (  ( 9.5 GHz  and 16.5 GHz ( (
(S21(( (30 dB  for  12 GHz ( (  ( 14 GHz
(26)

L1, L2 and S are selected as designable parameters.  W1 and W2 are fixed at 4.8 mil.  Only eleven frequency points are utilized per sweep.  The mapping parameters are obtained using the real and imaginary parts of S21.  The initial trust region size and extraction radius are 
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The design procedure is carried out with the interpolation option of Empipe disabled.  Here, every iterate is snapped to the nearest on-grid point.  Our algorithm carried out only 16 iterations.  A total of 18 calls to Empipe (18 em simulations) were needed.  The initial and final designs are given in Table IV.  The corresponding responses are shown in Figs. 12 and 13.  The value of U in each iteration is shown in Fig. 14.  The final mapping parameters are
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The HTS Filter

We also consider the design of an HTS filter [12].  This filter is shown in Fig. 15.  The design specifications are

(S21( ( 0.05  for  (  ( 3.967 GHz  and 4.099 GHz ( (
(S21( ( 0.95   for  4.008 GHz ( (  ( 4.058 GHz
(28)

The designable parameters are L1, L2, L3, S1, S2 and S3.  We take L0 = 50 mil and W = 7 mil.  The coarse model exploits the empirical models of microstrip lines, coupled lines and open stubs available in OSA90/hope (see Fig. 16).  The fine model employs Sonnet’s em through Empipe.  We utilized the real and imaginary parts of both S11 and S21 in the optimization procedure (15)-(16).  The initial trust region size is 
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The HTS design is carried out assuming lossless substrate dielectric.  A relatively coarse grid size is used.  The material and physical parameters values used in both OSA90/hope and in em are shown in Table V.  The fine model is simulated at 16 frequency points per sweep.  Starting from the snapped optimal coarse design, the final design is reached in 7 iterations only.  A total of 7 fine model simulations are used.  The initial and final designs are given in Table VI.  The corresponding responses are shown in Figs 17 and 18, respectively.  The value of U in each iteration is shown in Fig. 19.

Fig. 20 illustrates the fine model response at the end of the first iteration.  It is seen that the fine model response is well aligned in the proper band using only one fine model simulation.  This illustrates the power of the algorithm in handling significant frequency shifts.  The final mapping is given by
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VI. CONCLUSIONS

We present a breakthrough algorithm for efficient optimization of microwave circuits.  The algorithm integrates, for the first time, SM optimization with surrogate model optimization.  It exploits a surrogate model in the form of a convex combination of a mapped coarse model and a linearized fine model.  The MCM utilizes a novel frequency-space mapping.  During optimization, the coarse and fine models are simulated over different frequency ranges.  This approach is shown to be powerful, especially if significant response shift exists.  It also enables indirect estimation of the derivatives of fine model responses.  The algorithm is successfully illustrated through the design of microwave filters and transformers.
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TABLE I

THE FINE MODEL CAPACITANCES FOR THE

CAPACITIVELY-LOADED IMPEDANCE

TRANSFORMER

Capacitance
Value

C1
10

C2
10

C3
10

all values are in pF

TABLE II

THE CHARACTERISTIC IMPEDANCES FOR

THE CAPACITIVELY-LOADED IMPEDANCE

TRANSFORMER

Impedance
Value

Z1
2.23615 

Z2
4.47230

all values are in ohm

TABLE III

THE INITIAL AND FINAL DESIGNS FOR THE 

CAPACITIVELY-LOADED IMPEDANCE

TRANSFORMER

Parameter
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L1
90.0000
81.59880

L2
90.0000
74.38324

all values are in degrees

TABLE IV

THE INITIAL AND FINAL DESIGNS FOR THE

DFS FILTER 

Parameter
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S
9.60
6.4

L2
60.80

84.8



L1
67.2
86.4

all values are in mil

TABLE V

MATERIAL AND PHYSICAL PARAMETERS

FOR THE HTS FILTER

Model Parameter
OSA90/hope
em

substrate dielectric constant
23.425
23.425

substrate thickness (mil)
19.9516
19.9516

shielding cover height (mil)
(
250

Conducting material thickness
0
0

Substrate dielectric loss tangent
0
0

Resistivity of metal ((m)
0
0

Surface roughness of metal
0
(

Magnetic loss tangent
(
0

Surface reactance ((/sq)
(
0

x-grid cell size (mil)
(
1.00

y-grid cell size (mil)
(
1.75
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TABLE VI

THE INITIAL AND FINAL DESIGNS FOR 
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Parameter
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all values are in mils
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Fig. 10.  The DFS filter.
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Fig. 11.  The coarse model of the DFS filter.
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[image: image207.wmf]Fig. 15.  The HTS filter.

Fig. 16.  The coarse model of the HTS filter.
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Fig. 17.
The optimal coarse model response (() and the fine model response (() at the initial design for the HTS filter.
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Fig. 18.
The optimal coarse model response (() and the fine model response (() at the final design for the HTS filter.
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Fig. 19.  The value of U at every iteration for the HTS filter.
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Fig. 20.
The optimal coarse model response (() and the fine model response (() at the end of the first iteration for the HTS filter.
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Fig. 2.	Illustration of the selection of the parameter extraction points, (a) at the (i(1)th iteration, we have the point � EMBED Equation.3  ��� and the set � EMBED Equation.3  ���, (b) a new point is generated by the algorithm that does not satisfy the success criterion, (c) � EMBED Equation.3  ��� becomes � EMBED Equation.3  ���, the previous perturbation � EMBED Equation.3  ��� is excluded from � EMBED Equation.3  ��� and the algorithm generates an alternative perturbation and (d) the set � EMBED Equation.3  ��� is used to extract new mapping parameters and predict a successful iterate.
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Fig. 1.	Illustration of the frequency-sensitive mapping concept, (a) a significant frequency band shift exists between fine and coarse model responses at the initial iteration and (b) the coarse model frequency is transformed such that both responses match.
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Fig. 5.  The fine model of the capacitively-loaded 10:1 impedance transformer.





         Fig. 6.  The coarse model of the capacitively-loaded 10:1 impedance transformer.
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Fig. 9.  The value of U in each iteration for the 10:1 impedance transformer.
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Fig. 8.	The optimal coarse model response (() and the fine model response (() at the final design for the capacitively-loaded 10:1 impedance transformer.
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Fig. 7.	The optimal coarse model response (() and the fine model response (() at the starting point for the capacitively-loaded 10:1 impedance transformer.
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Fig. 12.	The optimal coarse model response (() and the fine model response (() at the starting design for the DFS filter.
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Fig. 13.	The optimal coarse model response (() and the fine model response (() at the final design for the DFS filter.
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Fig. 14.  The value of U at every iteration for the DFS filter.
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Fig. 3.  Illustration of the ith iteration of the algorithm.





Fig. 4.  A flowchart of the algorithm.
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