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M.H. Bakr, Student Member, IEEE, J.W. Bandler, Fellow, IEEE, K. Madsen, J.E. Rayas-Sánchez, Senior 

Member, IEEE, and J. Søndergaard  

 

Abstract A powerful new Space Mapping (SM) optimization algorithm is presented.  It draws upon 

recent developments in both surrogate model-based optimization and modeling of microwave devices.  

SM optimization is formulated as a general optimization problem of a surrogate model.  This model is a 

convex combination of a mapped coarse model and a linearized fine model.  It exploits, in a novel way, a 

linear frequency-sensitive mapping.  During the optimization iterates, the coarse and fine models are 

simulated at different sets of frequencies.  This approach is shown to be especially powerful if a 

significant response shift exists.  The algorithm is illustrated through the design of a capacitively-loaded 

10-1 impedance transformer and a Double-Folded Stub (DFS) filter.  A High-Temperature 

Superconducting (HTS) filter is also designed using decoupled frequency and space mappings.  

 

I. INTRODUCTION 

In this work we present a novel Space Mapping (SM) algorithm for microwave circuit 

optimization [1].  It integrates, for the first time, two distinct optimization approaches: SM optimization 

[2-4] and surrogate model-based optimization [5-7].  Both approaches aim at efficiently optimizing an 
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accurate and time-intensive “fine” model, e.g., a full-wave electromagnetic (EM) simulator.  SM exploits 

the existence of a less accurate but fast “coarse” model.  It formulates the design problem as a system of 

nonlinear equations.  On the other hand, surrogate-based optimization, new to the microwave arena, 

exploits an approximate model in iteratively solving the original design problem.  This model may be a 

less accurate physically-based model or algebraic model [6]. 

Our algorithm combines both approaches.  The original design problem is iteratively solved using 

a surrogate model.  This model is a convex combination of a mapped coarse model and a linearized fine 

model.  The accuracy of the surrogate model is improved in every iteration using the generated fine model 

simulations. 

Recent developments in Space Mapping-based Neuromodeling (SMN) [8] and Generalized Space 

Mapping (GSM) modeling [9] exploit frequency-sensitive mappings.  This approach is reported to 

improve the accuracy of SM-based models.  We integrate this concept, in a novel way, with SM 

optimization.  In each iteration, a linear frequency-sensitive mapping is exploited in constructing the 

mapped coarse model.  Here, the coarse and fine models are simulated over different frequency ranges.  

This approach handles significant frequency shifts efficiently. 

The established frequency-sensitive mapping obtains an estimate of the derivatives of the mapped 

coarse model responses.  These derivatives are expressed in terms of the coarse model derivatives and the 

mapping parameters.  We show that this expression is a generalized form for frequency-sensitive 

mappings of the lemma utilized in [4].  It can be used to approximate the fine model derivatives in the 

region of interest.   

A number of examples are successfully solved.  They include a capacitively-loaded two-section 

10:1 impedance transformer [10], a Double-Folded Stub (DFS) filter [11] and a High Temperature 

Superconducting (HTS) filter [12].  Decoupled frequency and space mappings are utilized in the 

optimization of the HTS filter.  This approach shows the feasibility of utilizing different types of 

frequency-sensitive mappings in the optimization loop.  
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II. SPACE MAPPING OPTIMIZATION VS. SURROGATE-BASED OPTIMIZATION 

We denote the fine model responses at a point  1n
f

x  and frequency   by 

 1),( N r
ff

ωxR .  These responses may include the real and imaginary parts of S11, etc.  The vector 

 1)( m
ff xR  denotes the responses at all the N simulation frequencies where m=Nr Nω .  The original 

design problem is 















=  Uminarg
ff

f

f
))((*

xR
x

x  

 

 

(1) 

where U  is the objective function and x
*

f  is the optimal fine model design.  Solving (1) using direct 

optimization methods, e.g. [13], is prohibitive due to the intensive simulation time of the fine model. 

SM optimization exploits the existence of a fast but less accurate “coarse” model of the circuit.  

We denote by  1n
cx  and  1)( m

cc xR  a coarse model point and the corresponding coarse model 

response vector, respectively.  The coarse model responses at a frequency  c  are similarly denoted by 

 1),( N r
ccc xR . 

The first step in all SM-based optimization algorithms obtains the optimal coarse model design 

x
*
c .  The corresponding response is denoted by  1* m

cR .  SM aims at establishing a mapping P between 

the two spaces [2] 

)( xPx fc
 =  

 

(2) 

such that 

)()( xRxR ccff
    

 

(3) 

over a region in the parameter space.  SM optimization obtains a space-mapped design x f
 whose 

response matches R
*
c .  x f

 is a solution of the nonlinear system 
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xxPxf *)()( cff −= = 0 
 

(4) 

where )(xP
f

 is approximated through a Parameter Extraction (PE) procedure. 

Previous SM optimization algorithms [2-4] solve (4) iteratively.  Let x
)(i

f  be the ith iterate.  

Aggressive Space Mapping (ASM) [2] predicts a new iterate hxx
)()()1( ii

f

i

f
+=

+  by utilizing the quasi-

Newton iteration 

)( )()()(
xfhB

i

f

ii −=  
 

(5) 

B
)(i
is an approximation to the Jacobian of  f  with respect to x f  at x

)(i
f .  It is updated at the end of every 

iteration using Broyden’s update [14]. 

The Trust Region Aggressive Space Mapping (TRASM) algorithm [3] minimizes )( )1(
xf +i

f  

using least squares within a trust region.  The ith iteration of the algorithm is given by 

fBhIBB
)()()()()( )(

iTiiiTi
 ψ −=+  

 

(6) 

Parameter ψ  is selected such that ,)()(
δ

ii h  where δ
i)(  is the size of the trust region.  The new iterates 

are accepted only if they are descent directions for f .  TRASM also utilizes a recursive multi-point 

extraction procedure to enhance the uniqueness of PE. 

Hybrid Aggressive Space Mapping (HASM) [4] addresses the problem of a poor coarse model.  It 

adopts a two phase approach.  The first phase exploits a TRASM strategy.  The second phase minimizes 

 
cff RxR
*

2
)( −  through direct least-squares optimization.  A relationship relates the available mapping to 

the first-order derivatives of the responses of both models [4].  It is used for switching between the two 

phases. 

Alternatively, an expensive model can be optimized indirectly by using a surrogate model [5-7].  

This surrogate model may be a less accurate physics-based model or a polynomial approximation of the 
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fine model [6].  We denote the surrogate model in the ith iteration by  1)( )( m

f

i
s xR .  The ith iteration 

step is obtained by solving 













+=  Uminarg ii

f
i

s
i

i ))(( )()()(

)(

)(
hxR

h

h , δ
ii )()( h  

 

(7) 

where ))(( )()()(
hxR

ii

f

i
s

U +  is the value of the objective function evaluated using the surrogate model at the 

point hx
)()( ii

f
+ .  The point hx

)()( ii

f
+  is then validated using fine model simulation.  It is accepted if it 

improves the fine model objective function.  Otherwise, the accuracy of )()(
xR f

i
s  should be improved.  

Different strategies can be utilized for improving the surrogate model accuracy.  One strategy utilizes 

only the validation fine model simulations.  Additional fine simulations may be generated to improve the 

surrogate model in certain directions of the parameter space 

 

III. THE SURROGATE MODEL 

In the ith iteration, our algorithm utilizes a surrogate model expressed as a convex combination of 

a Linearized Fine Model (LFM) and a Mapped Coarse Model (MCM) )()( xR f
i

m
.  It is given by 

)Δ)()(1()()( )()()()()()( xJxRxRxR f
i

f

i
ff

i
f

i

m
i

f
i

s
λλ +−+= ,  10,)(  λ

i   
 

(8) 

 nmi

fJ
)(

 is an approximation to the Jacobian of fine model responses at x
)(i

f  and x fΔ = x f − x
)(i

f .  The 

parameter λ
i)(  determines which model is favored.  If 1)( =λ

i , the surrogate model becomes a MCM.  If 

0)( =λ
i , the surrogate model becomes a LFM.  ( )10,)(  λ

i  , the surrogate model exploits both 

approximations.  The LFM part in (8) ensures that the algorithm will work if the coarse model is poor or 

even wrong. 

The MCM )()( xR f
i

m
 utilizes the linear frequency-space mapping 

                         ),(),( )(
ωω jf

i

mjff
xRxR  = (9) 
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                                                      )),(),,(( )()(
ωPω jf

i
jf

i
c

xxPR 
, j=1, 2, , N 

where 









+
















=









γωσωP

ω
i

i

j

f

iTi

ii

jf
i

ω

jf
i

)(

)(

)()(

)()(

)(

)( Δ

),(

),( cx

t

sB

x

xP
, 

 

(10) 

The parameters  nni
B

)( ,  1)( ni
s ,  1)( ni

t ,  1)( ni
c ,  11)(

σ
i  and  11)(

γ
i

 are the mapping 

parameters.  ω j  is the jth simulation frequency, j=1, 2, , N.  Here, a fine model point x f  and 

frequency ω j  correspond to a coarse model point ),()(
ω jf

i xP  and coarse model frequency 

),()(
ωP jf

i
ω x .  Notice that (10) defaults to the frequency-insensitive mapping utilized by the ASM, 

TRASM and HASM algorithms if == ts
)()( ii

0, 1)( =σ
i  and 0

)(
=γ

i
. 

The advantage of utilizing (10) is illustrated by Fig. 1.  It is required to extract the coarse point 

xc  corresponding to a given fine point x f .  Previous SM-based algorithms utilize the PE procedure 














−= )()( xRxR

x
x

ccff
c

c minarg  

 

(11) 

Fig. 1(a) shows also the coarse model response at the starting point for (11).  The PE optimizer may not 

have enough information to align the almost disjoint responses.  However, the responses align perfectly if 

a frequency transformation )(ωPωc =  is applied to the coarse model frequency axis.  This implies that 

the two models are simulated at different frequencies.  Fig. 1(b) shows the aligned responses.  It follows 

that (10) allows another degree of freedom in aligning the coarse and fine models. 

Utilizing a frequency sensitive mapping also enables indirect estimation of the fine model 

derivatives.  Using (9), the Jacobian of the mapped coarse model responses  nNr
j

k

fm ω ),( )(
xJ  at a 

point x
)(k

f
 and frequency  j

 is given by 
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





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
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
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ω

ω

ω
T
c

f

ωω
T
c

f

T
T

j
k

f

i
ωω

j
k

f

i

f

f
T
m

T

j

k
ff

j
k
fm

),(),(

),(

),(

),(
),(

)()(

)()(

)(

)(

PR

xP

PR

x

P

x

xPP

x

xR

xx

xJ

 

 

 

 

(12) 

  

For the case of the linear frequency-sensitive mapping (10), relation (12) becomes 


















+













=
=

= t
PR

B
P

PR

x

xPP

xJ
Ti

ω

ωciω
T
c

T

 

j
k
f

i

j
k
f

i
j

k
fm

P

P 
 

  

P

PP

ω
)()(

)()(

)()(

)( ),(),(

),(

),(
),(







 

 

(13) 

Formula (13) utilizes only coarse model derivatives in estimating the MCM derivatives.  It defaults to the 

lemma utilized by the HASM algorithm [4] 

BxxPJxJ )()()()()()( )),(),,((),( i
j

k
f

i
j

k
f

i
cj

k
fm P  =  

(14) 

for the case of a linear frequency-insensitive mapping cxBxP
)()()( ),( i

f
i

f
i ω +=  and ωω P f

i =),()( x


. 

The MCM should approximate the fine model over a region of fine model parameters and 

frequency.  The mapping parameters are thus obtained through the optimization procedure 













=

T

N p

iii iii

min
γ  σ,   

arg                                     

γ  ,σ   

][
,,,,

],,,,[

21

)()()( )()()(

eee
ctsB

ctsB


 

 

(15) 

)()( )()(
xRxRe

f

k

f

k

fk m
−=    V

ik

f

)()( x ,  
 

(16) 

where V
i)(  is a set of fine model points whose cardinality is NV p

i =)( .  V
i)(  is constructed through an 

iterative process.  Initially, we set  x
)()( i

f

i
V = .  The two conditions 

( ) ( )
( )

  α      Vε  i
ff

ik

fi
f

k
f

i
ff

i
f

k
f

i
ff

T

−−
−−

−−
xxx

xxxx

xxxx
)()()(

)()()(

)()()(

0and1                (17) 
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are checked S
i

ff
)( x , the set of simulated fine model points up to the ith iteration.  The first 

condition ensures better coverage by the points in V
i)( .  The second condition rejects points outside an  

neighborhood of x
)(i

f
.  We denote   as the extraction radius.  A point x f  is added to V

i)(  if (17) is 

satisfied. 

If the (i−1)th iteration is unsuccessful, the mapped coarse model should be improved.  This is 

important to guarantee a successful iteration in the ith iteration.  However, no improvement is possible if 

(17) results in VV
ii )1()( −= .  In this case, an additional perturbation x is generated by the algorithm.  x 

is obtained by solving 

( )















−

−


=  max

V

  min
S

arg
i
f

k
f

i
f

k
f

T

ik
fν xxx

xxx

xx
x

)()(

)()(

)()( Δ

Δ

Δ
Δ                                     (18) 

where 














== 0and )()()()()()(

)(

)(

τ  τ
ν

ν
αS

iiiii
f

Ti
fi

i

v ννJJ                                    (19) 

The set S ν
 contains perturbations of length   in the direction of the eigenvectors of the matrix JJ

)()( i
f

Ti
f .  

A similar approach is utilized by the Aggressive Parameter Extraction (APE) [15] algorithm.  These 

perturbations capture the functional behavior of the fine model within the considered region.  xΔ  is a 

perturbation in S ν
 that maximizes the coverage of the -neighbourhood.  The point xx Δ

)(
+

i

f  is then 

simulated and added to V
i)( .  The construction of V

i)(  is illustrated in Fig. 2. 

IV. THE ALGORITHM 

The ith iteration of the algorithm proceeds as follows.  First, the set V
i)(  is constructed.  The 

mapping parameters are then estimated using the optimization procedure (15)-(16).  The suggested step 

h
)(i  is obtained by solving (7), where the surrogate model is given by (8).  Notice that (7) utilizes only 

coarse model simulations and can be solved using traditional optimization methods. 
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If the response R
*
c  is good enough, we may be satisfied with a design for which RxR

*
cff

)( .  

In this case, we select U as  
cff RxR
*)( − .  However, if the optimality of the design is the main concern, 

U may be selected as the generalized minimax objective function [13]. 

The optimizer utilized in solving (7) may require first order derivatives in addition to the 

surrogate model responses.  The surrogate model Jacobian  nmi

fs
)( )(

xJ  is given by 

( ) )(1)()( )()()()()(
xJxJxJ

i

ff
ii

f
i

m

i

fs λ λ −+=                                                 (20) 

 nmi

fm )( )(
xJ is the Jacobian of the mapped coarse model responses at all frequencies.  Using (13), it is 

given by 

 ),(),(),()( )(
2

)(
1

)()(
ωωω

Nω

i
f

T

m

i
f

T

m

i
f

T

m

Ti
fm xJxJxJxJ =                                  (21) 

The step h
)(i  obtained through (7) is accepted if it improves the fine model objective function.  

Otherwise, it is rejected.  The parameters J
)(i

f
, δ

i)(  and λ
i)(  are updated in every iteration.  Broyden’s 

formula [14] is used to update J
)(i

f .  Initially, we set JJ
*)1(

cf
= , the Jacobian of the coarse model response 

at x*
c .  The trust region size δ

i)(  is updated based on the ratio between the actual reduction ra in U and 

the predicted reduction rp.  The ratio 

))(())((

))(())((

)()()()()(

)()()(

hxRxR

hxRxR
ii

f
i

s
i
f

i
s

ii
ff

i
ff

p

a

UU

UU

r

r
ρ

+−

+−
==  

 

(22) 

is thus evaluated at the end of each iteration.  If 75.0ρ , the surrogate model has good accuracy and we 

set δπδ
ii )(

1
)1( =+ , 0.11 π .  If 10.0ρ , we set δπδ

ii )(
2

)1( =+ , 0.10 2  π .  Otherwise, we set δδ
ii )()1( =+ .  

λ
i)(  is updated to favor the more accurate model, either the LFM or the MCM.  It is initialized by 1)1( =λ .  

The utilized update is 

EE

E

)()(

)(

)1(

i
m

i

l

i

l
i

λ
+

=+  

 

(23) 



 

10 

if ε
i

l 
E

)( .  Otherwise, we set 1)1( =+
λ

i .  The vectors )()( )()()()()()(
hxRhxRE

ii

ff

ii

f

i
m

i
m

+−+=  and 

)()( )()()()()()(
hxRhJxRE

ii

ff

ii

f

i

ff
i

l
+−+=  define the prediction error using the MCM and the LFM, 

respectively.  The update (23) assigns higher weight to the more accurate model.  It should be noted that 

the linearized fine model starts with low accuracy.  However, Broyden’s update iteratively improves the 

accuracy of this model.  Our algorithm terminates if n+1 consecutive unsuccessful iterations are carried 

out or if h
)(i

 becomes sufficiently small.  Fig. 3 illustrates one iteration of the algorithm. 

The algorithm can be summarized by the following steps 

Step 1. Given xx
*)1(
cf

= , 1)1( =λ , δ
)1( , α , JJ

*
cf

=
)1(  and i=1. 

Step 2. Construct V
i)( . 

Step 3. Apply the optimization procedure (15)-(16) to obtain the mapping parameters. 

Step 4. Obtain the suggested step h
)(i  by solving (7). 

Step 5. If ))(())(( )()()(
xRhxR

i
ff

ii
ff

UU + , set hxx
)()()1( ii

f

i

f
+=+  else xx

)()1( i

f

i

f
=+ . 

Step 6. Update J
)(i

f
, δ

i)(  and λ
i)( . 

Step 7. If the stopping criterion is satisfied stop. 

Step 8. Set i=i+1 and go to Step 2. 

A flowchart of the algorithm is shown in Fig. 4. 
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V. EXAMPLES 

A Capacitively-Loaded 10:1 Impedance Transformer [10] 

We consider the design of a capacitively-loaded 10:1 impedance transformer.  The proposed fine 

and coarse models are shown in Figs. 5 and 6, respectively.  The values of the capacitances that we use 

are given in Table I.  Design specifications are  

S11 0.50  for  0.5 GHz    1.5 GHz (24) 

The electrical lengths of the two transmission lines at 1.0 GHz are selected as designable parameters.  The 

characteristic impedances are kept fixed at the optimal values given in Table II.  Both models make use of 

the ideal transmission line model available in OSA90/hope [16].  Eleven frequency points are simulated 

per sweep.  We utilized the real and imaginary parts of S11 in the optimization procedure (15)-(16).  The 

initial trust region size and extraction radius are x
*
cδ


= 09.0)1(  and x

*
cα


= 09.0 , respectively.  The 

algorithm executed five iterations.  Only the first two are successful.  The total number of fine model 

simulations is seven.  The initial and final designs are given in Table III.  The corresponding responses 

are shown in Figs. 7 and 8, respectively.  The final mapping is given by 










−
=

19167.1176690.

19245.012886.1
)6(

B , 







=

95123.87

52643.84
)6(

c ,   






 −
=

0.06035 

0.06863 
)6(

s , 










−

−
=

002120.

00026.0
)6(

t , 1.03243 )6( =σ  and 0.00983
)6(
=γ  

 

 

(25) 

 

The value of U in every iteration is shown in Fig. 9. 

A Double-Folded Stub (DFS) Filter [11] 

The DFS fine model utilizes Sonnet’s em [17] through Empipe [16] (See Fig. 10).  The coarse 

model, shown in Fig. 11, exploits the microstrip line and microstrip T-junction models available in 

OSA90/hope.  The coupling between the folded stubs and the microstrip line is simulated using 

equivalent capacitors.  The values of these capacitors are determined using Walker’s formulas [18].  

Jansen’s microstrip bend model [19] is used to model the folding effect of the stub. 
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The design specifications are 

S21 −3 dB  for     9.5 GHz  and 16.5 GHz   

S21 −30 dB  for  12 GHz     14 GHz 

 

(26) 

L1, L2 and S are selected as designable parameters.  W1 and W2 are fixed at 4.8 mil.  Only eleven 

frequency points are utilized per sweep.  The mapping parameters are obtained using the real and 

imaginary parts of S21.  The initial trust region size and extraction radius are x
*
cδ


= 09.0)1( and 

x
*
cα


= 09.0 .  The width S is scaled by a factor of 6.0 to make the problem better conditioned. 

The design procedure is carried out with the interpolation option of Empipe disabled.  Here, every 

iterate is snapped to the nearest on-grid point.  Our algorithm carried out only 16 iterations.  A total of 18 

calls to Empipe (18 em simulations) were needed.  The initial and final designs are given in Table IV.  

The corresponding responses are shown in Figs. 12 and 13.  The value of U in each iteration is shown in 

Fig. 14.  The final mapping parameters are 

















−

−=

78257.034204.035144.0

00365.096384.020595.0

00031.011174.003074.1
)17(

B , 

















=

8218.74

5218.21

1134.236
)17(

c , 

















=

50045.0

70939.0

44639.0
)17(

s , 

















−=

00439.0

01167.0

03854.0
)17(

t , 13771.1)17( =σ  and 55168.0
)17(

−=γ  

 

 

(27) 

The HTS Filter 

We also consider the design of an HTS filter [12].  This filter is shown in Fig. 15.  The design 

specifications are 

S21  0.05  for     3.967 GHz  and 4.099 GHz   

S21  0.95   for  4.008 GHz     4.058 GHz 

 

(28) 

The designable parameters are L1, L2, L3, S1, S2 and S3.  We take L0 = 50 mil and W = 7 mil.  The coarse 

model exploits the empirical models of microstrip lines, coupled lines and open stubs available in 

OSA90/hope (see Fig. 16).  The fine model employs Sonnet’s em through Empipe.  We utilized the real 
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and imaginary parts of both S11 and S21 in the optimization procedure (15)-(16).  The initial trust region 

size is x
*
cδ


= 20.0)1( .  The  -neighborhood is selected as an n-dimensional box.  This takes into 

account that the response is more sensitive to the lengths than the widths.  The interpolation option of 

Empipe is disabled to make the optimization time reasonable. 

Here, we fix == ts
)()( ii

0.  The rest of the mapping parameters are obtained using (15)-(16).  This 

implies that the frequency and space mappings are decoupled.  This approach reduces the number of 

optimizable parameters in (15)-(16) .  Consequently, it makes the extraction of the mapping parameters 

better conditioned.  This approach is motivated by the fact that previous examples have effectively 

decoupled mappings ( s
)(i

0 and t
)(i

0).    

The HTS design is carried out assuming lossless substrate dielectric.  A relatively coarse grid size 

is used.  The material and physical parameters values used in both OSA90/hope and in em are shown in 

Table V.  The fine model is simulated at 16 frequency points per sweep.  Starting from the snapped 

optimal coarse design, the final design is reached in 7 iterations only.  A total of 7 fine model simulations 

are used.  The initial and final designs are given in Table VI.  The corresponding responses are shown in 

Figs 17 and 18, respectively.  The value of U in each iteration is shown in Fig. 19. 

Fig. 20 illustrates the fine model response at the end of the first iteration.  It is seen that the fine 

model response is well aligned in the proper band using only one fine model simulation.  This illustrates 

the power of the algorithm in handling significant frequency shifts.  The final mapping is given by 



























−−

−−−

−−−

−−

−−−−

−−−

=

95969.000672.002453.001869.001400.001401.0

01541.003175.102317.001766.001320.001324.0

01747.001671.004437.102016.001509.001513.0

00955.002963.001433.097551.000831.000828.0

00592.003234.000912.000695.096627.000481.0

00979.007505.001422.001082.000855.008894.1

)8(
B , 

 

 

 

 

(29) 
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

























=

32096.113

89007.98

96889.23

53859.180

38887.190

61046.180

)8(
c , == st

)8()8(
0, 07264.1)8( =σ , 12873.0

)8(
−=γ  

 

 

VI. CONCLUSIONS 

We present a breakthrough algorithm for efficient optimization of microwave circuits.  The 

algorithm integrates, for the first time, SM optimization with surrogate model optimization.  It exploits a 

surrogate model in the form of a convex combination of a mapped coarse model and a linearized fine 

model.  The MCM utilizes a novel frequency-space mapping.  During optimization, the coarse and fine 

models are simulated over different frequency ranges.  This approach is shown to be powerful, especially 

if significant response shift exists.  It also enables indirect estimation of the derivatives of fine model 

responses.  The algorithm is successfully illustrated through the design of microwave filters and 

transformers. 
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TABLE I 

THE FINE MODEL CAPACITANCES FOR THE 

CAPACITIVELY-LOADED IMPEDANCE 

TRANSFORMER 

 
 

Capacitance 
 

Value 

 

C1 
 

10 
C2 10 

C3 10 
 

all values are in pF 

 

TABLE II 

THE CHARACTERISTIC IMPEDANCES FOR 

THE CAPACITIVELY-LOADED IMPEDANCE 

TRANSFORMER 
 

 

Impedance 
 

Value 

 

Z1 
 

2.23615  

Z2 4.47230 
 

all values are in ohm 

 

 

TABLE III 

THE INITIAL AND FINAL DESIGNS FOR THE  

CAPACITIVELY-LOADED IMPEDANCE 

TRANSFORMER 

 
 

Parameter 

 

x
)1(

f  

 

x
)6(

f  

 

L1 
 

90.0000 
 

81.59880 

L2 90.0000 74.38324 
 

all values are in degrees 

 

 

 

 

 

 

 

 

 

TABLE IV 
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THE INITIAL AND FINAL DESIGNS FOR THE 

DFS FILTER  
 

 

Parameter 

 

x
)1(

f
 

 

x
)17(

f
 

 

S 
 

9.60 
 

6.4 

L2 60.80 
 

84.8 
 L1 67.2 86.4 

 

all values are in mil 

 

TABLE V 

MATERIAL AND PHYSICAL PARAMETERS 

FOR THE HTS FILTER 
 

 

Model Parameter 

 

 

OSA90/hope 

 

 

em 

 

substrate dielectric constant 
 

23.425 
 

23.425 

substrate thickness (mil) 19.9516 19.9516 

shielding cover height (mil)  250 

Conducting material thickness 0 0 

Substrate dielectric loss tangent 0 0 

Resistivity of metal (m) 0 0 

Surface roughness of metal 0 ⎯ 

Magnetic loss tangent ⎯ 0 

Surface reactance (/sq) ⎯ 0 

x-grid cell size (mil) ⎯ 1.00 

y-grid cell size (mil) ⎯ 1.75 

 

TABLE VI 

THE INITIAL AND FINAL DESIGNS FOR  

THE HTS FILTER 
 

 

Parameter 

 

x
)1(

f  

 

x
)8(

f  

 

L1 
 

188.00 
 

188.00 
 

L2 
 

198.00 
 

192.00 

L3 189.00 187.00 

S1 22.75 22.75 

S2 99.75 78.75 

S3 112.00 91.00 
 

all values are in mils 
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),( ω R ff x , ),( ω R cfc x  

, c (b) 

Fig. 1. Illustration of the frequency-sensitive mapping concept, (a) a significant frequency band shift 

exists between fine and coarse model responses at the initial iteration and (b) the coarse model 

frequency is transformed such that both responses match. 
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x
1)( −i

f
 

V
i )1( −

 

(a) 

x
)1( −i

f
 

x
)(i

f
 

(b) 

x
)(i

f
 

V
i)(

 

(c) 

x
)(i

f
 

x
)1( +i

f
 

(d) 

Fig. 2. Illustration of the selection of the parameter extraction points, (a) at the (i−1)th iteration, we 

have the point x
1)( −i

f
 and the set V

i )1( − , (b) a new point is generated by the algorithm that does 

not satisfy the success criterion, (c) x
1)( −i

f
 becomes x

)(i

f
, the previous perturbation h

)(i  is 

excluded from V
i)(  and the algorithm generates an alternative perturbation and (d) the set V

i)(  is 

used to extract new mapping parameters and predict a successful iterate. 
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Fig. 3.  Illustration of the ith iteration of the algorithm. 
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Fig. 4.  A flowchart of the algorithm. 
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Fig. 5.  The fine model of the capacitively-loaded 10:1 impedance transformer. 
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         Fig. 6.  The coarse model of the capacitively-loaded 10:1 impedance transformer. 
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Fig. 7. The optimal coarse model response (⎯) and the fine model response () at the starting point for 

the capacitively-loaded 10:1 impedance transformer. 
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Fig. 8. The optimal coarse model response (⎯) and the fine model response () at the final design for 

the capacitively-loaded 10:1 impedance transformer. 
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Fig. 9.  The value of U in each iteration for the 10:1 impedance transformer. 
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Fig. 10.  The DFS filter. 

 

 

 

 

 

 

 
 

Fig. 11.  The coarse model of the DFS filter. 
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Fig. 12. The optimal coarse model response (⎯) and the fine model response () at the starting design 

for the DFS filter. 
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Fig. 13. The optimal coarse model response (⎯) and the fine model response () at the final design for 

the DFS filter. 
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Fig. 14.  The value of U at every iteration for the DFS filter. 
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Fig. 15.  The HTS filter. 

 

Fig. 16.  The coarse model of the HTS filter. 
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Fig. 17. The 

optimal coarse model response (⎯) and the fine model response () at the initial design for the 

HTS filter. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 18. The 

optimal coarse model response (⎯) and the fine model response () at the final design for the 

HTS filter. 
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Fig. 19.  The 

value of U at every iteration for the HTS filter. 

 

 

 

 

 

 

 

 

 

 

 

Fig. 20.  The optimal 

coarse model response (⎯) and the fine model response () at the end of the first iteration for 

the HTS filter. 
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