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Abstract We present a new computer-aided modeling methodology to develop physics-based models

for passive components.  We coherently integrate full-wave EM simulators, artificial neural networks,

multivariable rational functions, dimensional analysis and frequency mapping to establish broadband

models.  We consider both frequency-independent and frequency-dependent empirical models.

Frequency mapping is used to develop the frequency-dependent empirical models.  Useful properties of

the frequency mapping are also presented and utilized in the modeling process.  We also consider the

transformation from frequency-dependent models into frequency-independent ones.  We illustrate the

modeling process through various examples, including a microstrip right angle bend, a microstrip via, a

microstrip double-step (to be used as a basic element of constructing a coarse model for nonuniform or

tapered microstrip transmission lines) and a CPW step junction.

I.  INTRODUCTION

We present a new computer-aided modeling methodology to develop physics-based empirical

                                                          
This work was supported in part by the Natural Sciences and Engineering Research Council of

Canada (NSERC) under Grants OGP0007239 and STP0201832, and through the Micronet Network of
Centres of Excellence.  J.E. Rayas-Sánchez is funded by CONACYT (Consejo Nacional de Ciencia y
Tecnología, Mexico), as well as by ITESO (Instituto Tecnológico y de Estudios Superiores de Occidente,
Mexico).

J.W. Bandler, M.A. Ismail and J.E. Rayas-Sánchez are with the Simulation Optimization Systems
Research Laboratory and the Department of Electrical and Computer Engineering, McMaster University,
Hamilton, Ontario, Canada L8S 4K1.

J.W. Bandler is also with Bandler Corporation, P.O. Box 8083, Dundas, Ontario, Canada L9H 5E7.



2

models (“coarse” models) for microwave passive components.  We integrate in a coherent way EM

simulators, artificial neural networks (ANN) [1,2], multivariable rational functions (MRF) [3],

dimensional analysis [4,5] and frequency mapping [6,7] to establish models valid over broad frequency

ranges.  We consider frequency-independent empirical models (FIEM) and frequency-dependent

empirical models (FDEM).  In the FDEM we use the frequency mapping approach [6,7] which implicitly

introduces frequency dependency into the model elements.  We also exploit the odd property of the

frequency mapping, that is the transformed or “coarse” model frequency must be an odd function of

frequency.  ANNs or MRFs are used to approximate these elements as well as the frequency mapping.

MRFs enable us to transform a simple FDEM to an equivalent FIEM.  This transformation can be

expedited by impedance synthesis [8] as we will see in the examples.  Dimensional analysis [4,5]

determines the functionality of the model elements and the frequency mapping on the components’

geometrical and physical parameters.  It also reduces the amount of training data required in the

approximation process.  The data required to develop FIEMs or FDEMs is obtained by accurate but time

intensive full-wave EM simulators (referred to in the space mapping literature as “fine” models [6]).  We

illustrate the process through various examples, including a microstrip right angle bend, a microstrip via,

a microstrip double-step (to be used as a basic element of constructing a coarse model for nonuniform or

tapered microstrip transmission lines) and a CPW step junction.

Equivalent circuits can be obtained from the literature or can be visualized by microwave

engineers through their understanding and expertise of microwave components.  We believe that, though

simple, they have advantages over black-box modeling of microwave components since they embody

physical characteristics (at least at low frequencies) of the actual components.  A shortcoming is that

those equivalent circuits may fail to give good accuracy at high frequencies due to dispersion.  We

address dispersive effects by introducing the frequency dependency into the elements of the equivalent

circuits.
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II.  FREQUENCY INDEPENDENT EMPIRICAL MODELS (FIEM)

Consider a microwave component modeled by a fine model (typically a suitable full-wave EM

simulator) and a coarse model (empirical model) in the form of an equivalent circuit.  We assume that the

topology of the equivalent circuit is known but the empirical formulas of their elements are to be

determined.  This concept is shown in Fig. 1, where fx  is an n-dimensional vector representing the

parameters of the microwave component, Rf  is a vector representing the fine model responses (typically

the scattering parameters), ω is the frequency and Rc is a vector representing the coarse model responses.

The development of the FIEM is shown in Fig. 2, where y is an l-dimensional vector representing the

empirical formulas of the elements of the coarse model.  Applying dimensional analysis [4,5] the vector y

becomes a function of an nr-dimensional vector xr (nr < n), which we call the reduced input parameter

vector (we will show in the examples how to construct this vector).  Through ANNs [1, 2] or MRFs [3]

we approximate y in a certain region of parameters and frequency as

),( wxQy r≈ (1)

where w is the set of parameters of the ANNs or the MRFs.  The set w is evaluated by solving the

optimization problem
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where  is a suitable norm, N is the total number of training points, M is the number of frequency points

per frequency sweep and ije  is an error vector given by

)),,((),( jircjiffij wxQRxRe −= (3)

The optimization problem in (2) is solved by the Huber optimizer implemented in OSA90 [13].  The

training points are selected according to the Central Composite Design (CCD) [9] and more training

points are added if necessary.
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III.  FREQUENCY DEPENDENT EMPIRICAL MODELS (FDEM)

Two approaches can be used to introduce frequency dependency to the elements of the FDEM.

One approach is to make the reduced vector xr and hence y depend on frequency as well as other physical

parameters (Fig. 3).  The second approach exploits the frequency mapping (transformation) concept [6,7],

where we simulate the coarse model at a different frequency from the fine model.  We call this frequency

the coarse model frequency ωc.  Frequency mappings (transformations) have roots in classical filter

design, for example, low-pass to band-pass or high-pass transformations [10].  The development of the

FDEM using this approach is shown in Fig. 4.  The dependency of ωc on ω as well as the physical

parameters is determined by applying dimensional analysis.  Both y and ωc can be approximated by an

ANN or a MRF as
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where w1 and w2 are the parameters of the ANN or MRF.  These parameters are evaluated by solving an

optimization problem similar to (2) with the error vector ije  given by

)),(),,((),( 21 wxwxQRxRe jirircjiffij ,−= (5)

Properties of the Frequency Mapping

Simulating the coarse model at a different frequency from that of the fine model is an implicit

way of introducing frequency dependency to the elements of the coarse model.  For example, if the device

is lossless the coarse model contains only lossless lumped-elements (lossless inductors and capacitors).

In this case, a FDEM simulated at ωc and with a circuit element vector y is equivalent to a FDEM

simulated at ω and a circuit elements vector y1 given by

yy )/(1 c= (6)

This can be proved as follows.  For any inductor L and capacitor C (simulated at frequency ωc) in y we

have

)/(LjZ cL = (7a)
)/(CjY cc = (7b)
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Therefore, the circuit elements vector y1 (simulated at frequency ω) is related to the vector y by (6).

Furthermore, the coarse model frequency ωc should be an odd function of ω.  This results from the even

and odd properties [10] of an arbitrary frequency-dependent impedance Z(ω), where the real (imaginary)

part should be an even (odd) function of frequency.  For example, if an inductor L is simulated at

frequency ωc the equivalent impedance ZL = jωc L is purely imaginary, hence ZL and consequently ωc

should be an odd function of ω.  The odd property is also preserved when using the frequency mapping to

transform a low-pass filter into a high- or a band-pass filter [10].  This property is used in conjunction

with dimensional analysis to further reduce the number of parameters of the ANN or the MRF

approximating ωc.

Transformation of FDEMs into FIEMs

The advantage of using MRFs to approximate the frequency mapping is that we can transform the

FDEM into an equivalent FIEM.  This transformation involves one-port impedance synthesis, which

states that the impedance we want to realize should be a real rational function [8].  For example, the

impedances associated with an inductor L and a capacitor C (simulated at ωc) in the circuit elements

vector y are ZL = jωc L and ZC = 1/jωc C, respectively.  Those impedances can be realized using any of the

one-port impedance synthesis techniques such as the first Foster realization or second Foster realization or

ladder realization [8].  In the examples presented here, we notice that the frequency ωc takes the form

4
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where f1, f2, f3, f4 are polynomials of the device physical parameters.  Therefore, the impedances

associated with an inductor L and a capacitor C in the circuit elements vector y are given by
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We believe that (8) may be useful for other devices such as microstrip mitered bends, microstrip step

junctions, etc.
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To display the results in a compact way we define the error in the scattering parameter Sij as the

modulus of the difference between the scattering parameter f
ijS  computed by the fine model and the

scattering parameter c
ijS  computed by the coarse model

22 ])Im[](Im[])Re[](Re[inerror c
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ijij SSSSSSS −+−=−= (10)

where i = 1,2,..., P and j = 1, 2,..., P (P is the number of ports of the microwave device).  We also define

the percentage error in Sij by
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We will use percentage error in Sij to display the results whenever f
ijS is not zero.

IV.  MULTIVARIABLE RATIONAL FUNCTIONS

Multivariable rational functions (MRFs) [3] are used in most of the modeling examples

developed here.  A multivariable rational function is the quotient of two polynomials,
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where T
nx ][ 21 xxx !=  is the input vector and a and b are two vectors containing the unknown a’s and

b’s respectively.  The polynomials in the numerator and the denominator are of finite order p and q,

respectively.  The rational function in (12) is fully characterized by the number of input variables n, the

numerator order p and the denominator order q, hence we refer to it as MRFn,p,q.  The number of unknown

parameters in a and b can be reduced if some of the input variables are restricted to a certain order less

than p or q.  For example, a MRF2,3,2 with the order of the input variable x1 restricted to 1 is given by

2
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which has 11 unknown parameters.  On the other hand, the MRF2,3,2 without restricting the order of x1 has

15 unknown parameters.  The unknown parameters in a and b can be computed by two methods.  First, if

the values of the function f in (12) are explicitly available we can evaluate a and b by solving an

overdetermined system of linear equations.  This is done by applying cross-multiplication to both sides of

(12) and rearranging the terms to get a system of linear equations in the elements of a and b.  This system

of linear equations can be solved by the method of least-squares or recursive least-squares algorithm [3].

Second, if values of f are not directly available we evaluate a and b by solving a suitable optimization

problem (in our case the optimization problem in (2)).  The second method is adopted in this work since

we evaluate the elements of the empirical model (inductors, capacitors, the frequency ωc, etc.) and the

only available information are the scattering parameters supplied by the EM simulators.

V.  MODELING EXAMPLES

Microstrip Right Angle Bend

Here, we develop a FIEM and a FDEM for the microstrip right angle bend in Fig. 5(a).  The fine

model is analyzed by Sonnet’s em [11] and the coarse model consists of the LC circuit [12] in Fig. 5(b).

The vector of input parameters T
rfx ][ ε= HW  and the vector of the circuit elements is

Ty ]//[ HCHL= .  Applying dimensional analysis [4,5], we can show that y is related to fx  by

)(/ 0 W/HfHL = (14a)

),(/ 0 rW/HfHC = (14b)

Therefore, y is a function of Tx ][ rr W/H= .  We first develop a FIEM in the frequency range [1, 11]

GHz.  The region of interest is 0.2 <W/H< 6 and 2 <εr< 11.  The substrate height H is chosen in the range

[5, 30] mil.  We use a three-layer perceptron ANN (with hyperbolic-tangent as nonlinear activation

function) to approximate y.  Two hidden neurons were used for L/H and three hidden neurons for C/H.

The training points are chosen according to the Central Composite Design (CCD) [9] in addition to 4

more points as shown in Fig. 6 (total 13 training points) where 1x̂  and 2x̂  are the scaled input variables
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corresponding to W/H and rε , respectively.  The vector y is also approximated by MRFs.  The inductance

per unit length L/H is approximated by a rational function MRF2,2,2 and the capacitance per unit length

C/H is approximated by a rational function of order MRF2,3,0 with the order of W/H restricted to one (this

gives better generalization performance than if we did not restrict the order of W/H).  The parameters of

the ANNs and the MRFs are obtained by the Huber optimizer in OSA90/hope [13].  Figs. 7(a) and (b)

show the error in the scattering parameter S11 at 16 test points in the region of interest for the FIEM

developed by ANN and MRF, respectively.  Fig. 7(c) shows the corresponding error due to the Jansen

model [14] at the same test points.  We see that the three models are comparable.

The results obtained by the FIEM (developed by either ANNs or MRFs) and by the Jansen

empirical model [14] over the range [1, 31] GHz are shown in Figs. 8 (a), (b) and (c), respectively.  It is

clear that neither the FIEM nor the empirical model in [14] are accurate at high frequencies.  Therefore,

we develop a FDEM (see Fig. 4), where ωc is a function of ω and the other parameters.  Applying

dimensional analysis (see Appendix A) and using the odd property of ωc we get

))(,( 2#$%rc xγ= (15)

where c is the speed of light and γ is an unknown function to be approximated.  We use MRFs to

approximate y as well as ωc.  A MRF3,2,2 with the order of (ωH/c)2 restricted to one is used to approximate

ωc.  The number of training points used to develop the FDEM is the same as that used to develop the

FIEM.  Figs. 9 (a) and (b) show the errors in the scattering parameters S11 and S21 at 16 test points in the

region of interest for the FDEM.  Fig. 10 compares the results obtained by the FDEM and those from

Sonnet’s em [11].  The empirical expressions for y and ωc are given in Table I (Appendix B).

We transform the FDEM into an equivalent FIEM as follows.  The frequency ωc is given by (8)

and, hence the impedances associated with L and C are given by (9a) and (9b), respectively. These

impedances are realized by the first Foster realization [8].  The equivalent FIEM is shown in Fig. 11(b),

where all elements are frequency independent and functions only of the device parameters.
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Microstrip Via

Here, we consider modeling the microstrip via of Fig. 12(a).  The coarse model is an inductor L to

ground (Fig. 12(b)).  The fine model is analyzed by Sonnet’s em [11].  The reference plane is at the

junction of the microstrip line and the square pad.  The vector T
fx ][ 0 DWHW= , where H is the

substrate height (GaAs, εr=12.9).  Here, y = [L/H], which is given by

),/,(/ 00 D/WWWW/HfHL = (16)

hence, Tx ][ 0 D/W/WWW/Hr = .  A FIEM was developed in the range [2, 10] GHz. The region of

interest is 1 <W/H< 2.2, 0.2 <W0/W < 1 and 0.2 <D/W< 0.8.  We use a MRF3,2,2 to approximate L/H.  The

training points are chosen according to the Central Composite Design (CCD) [9] in addition to 8 more

points (total 23 training points).  The parameters of the MRF are obtained by the Huber optimizer in

OSA90/hope [13].  The percentage errors in the inductance L and in S11 at 30 test points are shown in Fig.

13.  Fig. 14 compares the FIEM with Sonnet’s em [11]

The results of the FIEM in the range [2, 22] GHz are shown in Fig. 15.  We notice large errors at

high frequencies.  This is because the simple inductor to ground does not take into account the effect of

the pad surrounding the via hole and the step junction [15] (see Fig. 12).  To overcome this deficiency we

develop a FDEM in the range [2, 22] GHz.  The coarse model frequency (applying dimensional analysis

and using the odd property of the frequency mapping) takes the same form as in (15).  We use MRFs to

approximate y as well as ωc.  The number of training points used is 23.  The percentage errors in L and in

S11 at 30 test points are shown in Figs. 16 (a) and (b), respectively.  The empirical expressions for L and

ωc are given in Table II (Appendix B).  The transformation of the FDEM into an equivalent FIEM follows

the microstrip right angle bend example.  The frequency ωc is given by (8).  The equivalent impedance of

L is of the form of (9a).  The resulting FIEM is shown in Fig. 17: it has the same topology as the

broadband model suggested by [16].
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Microstrip Double-Step

Here, we consider broadband modeling of the microstrip double-step element in Fig. 18(a).  It can

be used to model microstrip tapered lines or nonuniform (in width) microstrip lines.   The coarse model

consists of two shunt capacitances and one series inductance (see Fig. 18(b)).  The fine model is analyzed

by Sonnet’s em [11].  The vector of fine model parameters T
fx ][ 321 WWW= .  The substrate height

H=25 mil, the relative dielectric constant 7.9=r  and the length l (see Fig. 18(a)) is 5 mil.  The circuit

elements vector Ty ][ 211 /HC/HC/HL= .  The elements of y are given by

),,/
2

3

1

22
101 W

W
W
W

H
WfHL !=

),,/
2

3

1

22
201 W

W
W
W

H
WfHC !=

),,(/
2

3

1

22
302 W

W
W
W

H
WfHC =

(17a)

(17b)

(17c)

hence, Tx ][ 23122 /WW/WW/HWr = .  The coarse model frequency (applying dimensional analysis and

using the odd property of the frequency mapping) takes the same form as in (15).  A FDEM of the

double-step element is developed in the range [1, 41] GHz.  The region of interest is 0.1 <W2/H< 1, 0.5

<W2/W1 < 0.9 and 0.5 <W3/W2< 0.9.  We use a MRF3,2,2 to approximate each element of the vector y and a

MRF4,2,2 to approximate ωc with the order of (ωH/c)2 restricted to 1.  The number of training points is 23.

The parameters of the MRFs are obtained by the Huber optimizer in OSA90/hope [13].  The empirical

expressions for y and ωc are given in Table III (Appendix B).  The errors in S11 and S21 of the FDEM with

respect to Sonnet’s em [11] at 27 testing points in the region of interest are shown in Figs. 19 (a) and (b),

respectively.  To evaluate the FDEM of the double-step we consider an alternative model for the double-

step element.  This model is composed of a microstrip transmission line and 2 step junctions as shown in

Fig. 20.  The empirical models for the microstrip line and the 2 step junctions are taken from

OSA90/hope.  Figs. 21(a) and (b) show the errors in S11 and S21 of this model with respect to Sonnet’s em

[11] at 27 testing points in the region of interest.  It is clear from Figs. 19 and 21 that the FDEM

outperforms the double-step model in Fig. 20.
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The FDEM of the double-step element is used to model the linear tapered microstrip line in Fig.

22.  The parameters of the tapered line are L= 150 mil, Win=18 mil, Wout=2 mil, H= 25 mil and 7.9=r .

The input microstrip line has a characteristic impedance of 50 ohm and the output line has a characteristic

impedance of 100 ohm.  The linear tapered microstrip line can be analyzed by cascading 30 double-step

elements (each of length l= 5 mil).  The ABCD matrix of the tapered line is related to the ABCD matrices

of the double-step elements by

∏
=

⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡ 30

1i i

i

i

i

D
B

C
A

D
B

C
A

(18)

We analyzed the tapered line by three methods: by Sonnet’s em [11] (the fine model), by cascading 30

double-step elements, where the FDEM is used to model each element and by cascading 30 elements

where the alternative model of the double-step element (Fig. 20) is used.  Fig. 23 compares the results

obtained by the three methods.

CPW Step Junction

Here, we develop a FIEM for the CPW step junction in Fig. 24(a).  The fine model is analyzed by

Sonnet’s em [11] and the coarse model consists of the LC circuit [12] in Fig. 5(b).  The vector of input

parameters T
fx ][ 21 GWW=  and the vector of the circuit elements is Ty ]///[ 21 HCHLHL= , where

),/,(/ 1121101 G/WWW/HWfHL = (19a)

),/,(/ 1121202 G/WWW/HWfHL = (19b)

),/,(/ 112130 G/WWW/HWfHC = (19c)

Therefore, y is a function of Tx ][ 1121 G/W/WW/HWr = .  The region of interest is 40 µm <W1 < 120 µm,

0.2 <W2/W1<0.8 and 0.2<G/W1<1 and the frequency range is [5, 50] GHz.  The substrate height H is 635

µm and the relative dielectric constant is 9.12=r (GaAs). The number of training points is 23.  Each

element of the vector y is approximated by a rational function MRF3,2,2.  The parameters of the MRFs are

obtained by the Huber optimizer in OSA90/hope [13].  The expressions for the elements of y are given in

Table IV (Appendix B).  Figs. 25 (a) and (b) compares between the results obtained by em [11] and those
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by the CPW step junction FIEM at 27 test points in the region of interest.  We notice that the CPW step

junction FIEM gives good results in broad frequency range 5 GHz to 50 GHz.  Therefore, we do not need

to develop a FDEM for the CPW step junction.  This means that the elements of the CPW step junction

empirical model are frequency independent.  Fig. 26 compares between the capacitance C extracted from

the Z-parameters obtained by em [11] (actually, em gives the S-parameters which can be transformed to

Z-parameters) using the formula

))GHz(]/(Im[10)( 21
3 ZpfC −= (20)

where Im[Z21] is the imaginary part of the Z21 and that predicted by the FIEM of the CPW step junction at

6 test points in the region of interest.

VI.  CONCLUSIONS

We present a unified computer-aided modeling methodology for developing broadband models of

microwave passive components.  Our approach integrates in a coherent way full-wave EM simulations,

artificial neural networks, multivariable rational functions, dimensional analysis and frequency mapping.

Two types of models are considered: FIEMs and FDEMs.  FDEMs can be transformed to equivalent

FIEMs if we use a MRF to approximate the frequency mapping.  This is important since the FIEMs are

readily implementable in conventional circuit simulators.  We applied our modeling methodology to

develop broadband empirical models for several microwave components, including a microstrip right

angle bend, a microstrip via, a microstrip double-step (to be used as a basic element of constructing a

coarse model for nonuniform or tapered microstrip transmission lines) and a CPW step junction.

Appendix A

We apply dimensional analysis to determine the dependency of the coarse model frequency ωc of

the microstrip right angle bend FDEM on the fine model frequency ω and the other parameters (see Fig.

5).  The method of dimensional analysis is based on Buckingham’s theorem [4].  This theorem states that

“If an equation is dimensionally homogeneous it can be reduced to a relationship among a complete set of
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dimensionless products of the system variables”.  The dimensionless products are called Pi (π) terms

[4,5].

For our case we assume that ωc depends on ω, the device parameters W, H, ε, the free space

permittivity ε0 and the speed of light c (we can replace c with the free space permeability µ0).  A

dimensional product π takes the form

7654321 )()( 0
x

c
xxxxxx cWH=π (A.1)

where the x’s are evaluated by solving the system of homogeneous equations

0=xC (A.2)

The elements of the coefficient matrix C in (A.2) can be obtained by constructing the table [4]

x1 x2 x3 x4 x5 x6 x7

H W C ε ε0 ω ωc

Kg 0 0 0 -1 -1 0 0

M 1 1 1 -3 -3 0 0
S 0 0 -1 4 4 -1 -1
A 0 0 0 2 2 0 0

where Kg, M, S and A are the units of the SI system.  Therefore, C is given by

⎥
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0
1
0
0

2
4
3
1

2
4
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1

0
1
1
0

0
0
1
0

0
0
1
0

C (A.3)

The number of independent solutions of (A.2) (the same as the number of independent π-terms) equals

the number of elements of x in (A.2) minus the rank of the matrix C.  In our case the number of elements

of x is 7 and the rank of the matrix C is 3, hence we have 4 independent solutions of (A.2) or 4 π-terms.

These independent solutions are given in the table
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x1 x2 x3 x4 x5 x6 x7

1 0 -1 0 0 1 0
0 1 -1 0 0 1 0
0 0 0 -1 1 0 0
0 0 0 0 0 -1 1

Therefore, the π-terms are given by

c&c# r /,/,/,/ 40321 c===== (A.4)

from 1π  and 2π  we can get HW // 122 ==ʹ .  Applying Buckingham’s theorem [4,5] the relation

between the independent π -terms can take the form

),,( 3214 ʹ= (A.5)

Therefore,

),,( #$%W/H rc = (A.5)

But since ωc is an odd function of ω (see Section III) we get

))(,,( 2#$%W/Hf rc = (A.6)
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Appendix B
TABLE I

EXPRESSIONS OF THE ELEMENTS OF THE FDEM
OF THE MICROSTRIP RIGHT ANGLE BEND

Element Expression

L/H(nH/mil) 2
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2
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3.0018.009.003192.0

x
xx

+

+−−

C/H(pF/mil) )262.0855.2275.0014.0162.046.0(000225.0 2
2
121

2
121 xxxxxxx +++−+−

ωc/ω ),,(
),,(

3212

3211

xxxf
xxxf

3
2
2321

2
21

3
2
12

2
1

3
13231

21
2
13213211

0022.00419.00017.0
1188.00071.00018.00079.01405.0
0026.00738.00187.00179.00192.0759.0),,(

xxxxxxx
xxxxxxxxx
xxxxxxxxxf

−++
+−++−
+++−−=

3
2
23213

2
1

2
2
1

3
132

2
231

21
2
13213212

0012.00056.00011.0
0028.00055.00067.00037.01674.0

0063.00051.00175.00086.00282.01),,(

xxxxxxx
xxxxxxxx

xxxxxxxxxf

−++
−+−++

−+−−+=

where 2
321 )(mil)(GHz)(7-e816.1,,/ HxxHWx === r

TABLE II
EXPRESSIONS OF THE ELEMENTS OF
 THE FDEM OF THE MICROSTRIP VIA

Element Expression

L/H(nH/mil) ),,(
),,(03192.0

3212

3211

xxxf
xxxf

32
2
231

21
2
13213211

111.2622.8983.0
036.5875.1779.1166.14173.20123.0),,(

xxxxx
xxxxxxxxxf

−−−
−++++=

32
2
231

21
2
13213212

381.7862.21088.1
471.15161.726.3784.30835.31),,(

xxxxx
xxxxxxxxxf

−−−
++++−=

ωc/ω ),,(
),,,(

43214

43213

x,xxxf
xxxxf

43
2
34232

2
2413121

2
1

432143213

0108.00962.05776.01121.0
161.00095.00808.00979.00948.0

2494.03837.0065.00427.09156.0),,,(

xxxxxxx
xxxxxxxx

xxxxxxxxf

++++
+++−−

−−−−=

43
2
34232

2
2413121

2
1

432143214

0725.00029.0885.0101.0
1864.00342.00649.01315.0024.0

4723.02042.00418.02841.01),,,(

xxxxxxx
xxxxxxxx

xxxxxxxxf

+−++
+++−−

−−+−=

where 2
30321 ))mil()GHz((07e816.1//,/ HxW,WxW,DxHWx −====
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TABLE III
EXPRESSIONS OF THE ELEMENTS OF

 THE FDEM OF THE MICROSTRIP DOUBLE-STEP

Element Expression

C1/H(pF/mil) ),,(
),,(0.0002246

3212

3211

xxxf
xxxf

2
332

2
23121

2
13213211

0642.01779.02749.03921.0099.0
7741.00088.04604.06697.06433.0),,(

xxxxxxxx
xxxxxxxf
−+−++

−+−+=

2
332

2
231

21
2
13213212

2907.00087.05845.04428.0
0499.06742.00211.03232.05641.01),,(

xxxxxx
xxxxxxxxxf

−+−+
+−−−+=

C2/H(pF/mil) ),,(
),,(0.0002246

3214

3213

xxxf
xxxf

2
332

2
23121

2
13213211

5347.03725.02595.00371.12666.0
0003.03263.01092.00972.37485.0),,(

xxxxxxxx
xxxxxxxf
−++++

−−++=

2
332

2
231

21
2
13213212

0122.0897.10063.04398.0
4179.0025.01229.11716.06556.01),,(

xxxxxx
xxxxxxxxxf

++++
+−−−−=

L/H(nH/mil)
),,(
),,(0.03192

3216

3215

xxxf
xxxf

2
332

2
23121

2
13213215

117.00169.01401.01021.00891.0
0737.01631.02209.02522.02934.0),,(

xxxxxxxx
xxxxxxxf
+−+−−

−−−+=

2
332

2
231

21
2
13213212

3023.08642.01237.01045.0
7775.0111.16713.0066.05332.21),,(

xxxxxx
xxxxxxxxxf

−−−−
+−+++=

ωc/ω ),,(
),,,(

43216

43215

x,xxxf
xxxxf

43
2
34232

413121
2
1

432143213

0257.01394.00499.00456.0
0602.00583.03735.02027.01473.0

076.02416.00699.02519.08955.0),,,(

xxxxxxx
xxxxxxxx

xxxxxxxxf

−++−
−+−+−

−++−=

43
2
34232

2
2413121

2
1

432143216

0373.02899.00389.01076.0
1261.0064.05079.00577.01895.0

0748.00579.01599.00524.01),,,(

xxxxxxx
xxxxxxxx

xxxxxxxxf

−+++
++−−−

−+−+=

where
2

423312221 ))mil()GHz((07e816.1//,/ Hx,WWx,WWxHWx −====
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TABLE IV
EXPRESSIONS OF THE ELEMENTS OF

 THE FIEM OF THE CPW STEP JUNCTION

Element Expression

L1/H (nH/µm)

),,(
),,(

0.00126
3212

3211

xxxf
xxxf

2
332

2
231

21
2
13213211

0092.00147.00099.00131.0
0045.01257.00114.00013.00222.00236.0),,(

xxxxxx
xxxxxxxxxf

−+−−
++−−−=

2
332

2
231

21
2
13213212

0045.01109.00372.05169.0
0011.01791.09638.04219.00909.01),,(

xxxxxx
xxxxxxxxxf

−−−+
++−++=

L2/H (nH/µm)
),,(
),,(0.00126

3214

3213

xxxf
xxxf

2
332

2
231

21
2
13213213

0122.00192.00415.01423.0
0523.03558.00175.00496.00782.00246.0),,(

xxxxxx
xxxxxxxxxf

−+++
−−+−+=

2
332

2
231

21
2
13213214

4105.00585.11729.01033.0
0126.0511.02462.02942.03664.11),,(

xxxxxx
xxxxxxxxxf

−++−
−−++−=

C/H (pF/µm)

),,(
),,(06-8.842e

3216

3215

xxxf
xxxf

2
332

2
231

21
2
13213215

873.03426.20358.05604.0
5228.21988.00039.00193.08175.17.1),,(

xxxxxx
xxxxxxxxxf

++++
−+−+−=

2
332

2
231

21
2
13213216

8377.09144.00459.00808.1
6552.12069.17102.05578.09222.21),,(

xxxxxx
xxxxxxxxxf

++++
+−+−−=

where 1312211 ,/ G/Wx,/WWxHWx ===
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Fig. 1.  The fine model (a) and the coarse model (b).

fx

ω
fR

approximate the
elements of the
coarse model

coarse
model fc RR ≈

y

fine model

reduction of
input  parameters

rx

),( wxQy r=

Fig. 2. The development of the frequency-independent empirical model (FIEM).
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Fig. 3.  The development of the FDEM with elements explicitly function of frequency.
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Fig. 4.  The development of the FDEM with elements implicitly function of frequency
through frequency mapping.
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Fig. 5.  The microstrip right angle bend: (a) the fine model, (b) the coarse model.
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Fig. 6.  The training points for the microstrip right angle bend.
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Fig. 7.  The error in S11 of the microstrip right angle bend with respect to emTM at the test points: (a) the
FIEM developed by ANNs, (b) the FIEM developed by MRFs, (c) by the empirical model in [14].
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Fig. 8.  The error in S11 of the microstrip right angle bend with respect to emTM over a broad frequency
range: (a) the FIEM developed by ANNs, (b) the FIEM developed by MRFs, (c) the empirical
model in [14].
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Fig. 9.  Error of the FDEM of the microstrip right angle bend (developed by MRFs)
with respect to emTM at the test points: (a) in S11, (b) in S21.
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Fig. 10.  Comparison between the responses obtained by the FDEM of the microstrip right angle bend and
those obtained by emTM at the test points: (a) magnitude of S11, (b) phase of S11 in degrees.
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Fig. 11.  The FDEM of the microstrip right angle bend (a) and the equivalent FIEM (b).

(b)

WDW0 L

(a)

Fig. 12.  The microstrip via: (a) the physical structure, (b) the coarse model (equivalent circuit).
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Fig. 13.  Percentage error of the FIEM of the microstrip via with respect to emTM at the test points:
(a) in S11, (b) in L.
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Fig. 14.  Comparison between the responses obtained by the FIEM of the microstrip via and those

obtained by emTM at the test points in the frequency range [2, 10] GHz: (a) phase of S11, (b)
the inductance L.
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Fig. 15.  Comparison of the FIEM of the microstrip via with respect to emTM over a broad frequency

range at the test points: (a) % error in S11, (b) % error in L.
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Fig. 16.  Comparison of the FDEM of the microstrip via with respect to emTM over a broad frequency
 range at the test points: (a) % error in S11, (b) % error in L.
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Fig. 17.  The FDEM of the microstrip via (a) and the corresponding FIEM (b).
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Fig. 18.  The microstrip double-step: (a) the physical structure where T1 and T2 are the reference planes,

(b) the coarse model.
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Fig. 19.  Comparison between the FDEM of the double-step element and emTM at the test points in the
region of interest: (a) error in S11, (b) error in S21.
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Fig. 20.  An alternative model for the microstrip double-step element.
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Fig. 21.  Comparison between the double-step model in Fig.20 and emTM at the test points in the region of
interest: (a) error in S11, (b) error in S21.
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Fig. 22.  Linear tapered microstrip line.
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Fig. 23.  The response of the linear tapered microstrip line by emTM (•  •), by the FDEM of the double-
step element (⎯), by the model in Fig.20 of the double-step element (----).
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Fig. 24.  The CPW step junction: (a) the physical structure, (b) the coarse model.
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Fig. 25.  Comparison between the results obtained by emTM and by the FIEM of the CPW step junction:
(a)⏐S11⏐ by emTM versus that of the FIEM, (b) the error in S21.
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Fig. 26.  The capacitance of the CPW step junction: (a)extracted from the fine model (• •),
(b) predicted by the FIEM of the CPW step junction (⎯).


