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Abstract

Electromagnetics (EM) based device modeling and circuit
optimization through Artificial Neural Network (ANN) and
Space Mapping (SM) technologies are reviewed. These two
concepts continue to promise important benefits in the next
generation of design optimization methodologies. ANNs can
learn from and generalize patterns in data and model nonlinear
relationships. On the other hand, Aggressive Space Mapping
(ASM) optimization closely follows the traditional experience
and intuition of designers, while being rigorously grounded
mathematically. Current progress in the development of suitable
algorithms and software engines are presented. The ANN and
SM concepts address the contradictory challenge of exploitation
of device models for CAD that are both accurate and fast.
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Outline

Generalized Space Mapping (GSM) tableau approach to
engineering device modeling is reviewed

new work on Space M apping optimization exploiting surrogate
modelsis described

a Neural Space Mapping (NSM) optimization approach
exploiting our SM-based neuromodeling techniques is presented
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Generalized Space M apping (GSM)

GSM is acomprehensive framework for engineering device
modeling

GSM exploits the Space Mapping (SM), the Frequency Space
Mapping (FSM) (Bandler et al., 1994) and the Multiple Space
Mapping (MSM) (Bandler et al., 1998) concepts to build a new
engineering device modeling framework

two cases are considered:

the basic Space Mapping Super Model (SMSM) concept
maps the device parameters

the Frequency-Space Mapping Super Model (FSMSM)
concept maps the device parameters as well as frequency

two variations of MSM are presented (Bandler et al., 1999):

MSM for Device Responses (MSMDR) develops a
different mapping for each subset of responses

MSM for Frequency Intervals (MSMFI) develops a different
mapping for each frequency interval
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MSM for Frequency Intervals (MSMFI)
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M athematical For mulation for GSM

the kth mapping targeting the sub-response R, or the response R
in the kth frequency sub-range is given by

(Xeks Ok ) = P (X, @)
or, in matrix form, assuming alinear mapping,

Xy O €0 By S OX¢O

H‘)ckH: %kHF %E ng%{u %

the mapping parameters{c, , B, , s, t, o\, d,} canbe
evaluated, directly or indirectly, by solving the optimization
problem

Ck,Bk,STi?k,ak,ak H e e, .. eka]TH

where misthe number of base points selected in the fine model
space and g Is an error vector given by

6 = Ry (X, 0) ~R.(x{, g ), j=12,..m
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Microstrip Shaped T-Junction

the fine and coarse models
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Microstrip Shaped T-Junction

the region of interest

Parameter Minimum value Maximum vaue

H 15 mil 25 mil
5 mil 15 mil
5 mil 15 mil

& 8 10

the frequency rangeis 2 GHz to 20 GHz with a step of 2 GHz

the number of base pointsis 9 and the number of test pointsis
50

the width W of the input linesis determined in terms of H and ¢,
so that the characteristic impedance of the input linesis 50 ohm

the width W; is taken as 1/3 of the width W
the width W is obtained so that the characteristic impedance of

the microstrip line after the step connected to port 2 istwice that
of the microstrip line after the step connected to port 1
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Microstrip Shaped T-Junction

MSM for Frequency Intervals (MSMFI) was developed to
enhance the accuracy of the T-Junction coarse model

the total frequency range was divided into two intervals: 2 GHz
to 16 GHz and 16 GHz to 20 GHz

the mapping parameters are

2 GHzto 16 GHz

16 GHz to 20 GHz

[11.04 007 001 0.08 —0.06

E 0.00 089 0.00 —0.07 —0.20

(+0.00 007 099 0.04-0.12

B 5— 0.04 000 -001 097 0.10-
[+013-005 -0.04-0.16 0.12

C [ 002 001 -001 -003 -0.01 007 - 0.03]-r

S [-0.01 009 -010 -0.02 0.00 -0.02 - 0.20]T

t 0

o 0.851

5 -0.003

000 022 OO0 JO099 002 -0.00 001-0.09-001 0.130

g 0

0.06 —0.03 00 0.05 085 0.01-0.07 -0.28 0.01- 0.01D

001 -0.06 U [+006 015 0.98

O

0.04 -0.25 0.00 0.02 O

006 027 O -010-0.06 —0.03 088 0.3 —009-027
B 001 004 000 003 099-005 -003 E E 008 004 003 011 1.07 -0.04-0.120
099 062 [J 014 -002-005-015 023 103 051
H o008 012 -003 000 -007 003 083H H013 022-004 002-007 003 0871

[001 001 -0.01 -0.03 —0.01 0.05-0.03]"

[0.00 001 —0.01 0.0 0.00 0.00 -0.02]"

[001 000 -0.02 0.00 0.00 0.00 0.00]"

0.957

0.008
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Microstrip Shaped T-Junction

the responses of the shaped T-Junction at two test pointsin the
region of interest by Sonnet’sem (o), by the coarse model (---)
and by the enhanced coarse model (—)
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Microstrip Shaped T-Junction

the error in Sy; and in Sy, of the shaped T-Junction coarse model
at the test points
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Microstrip Shaped T-Junction

the enhanced coarse model for the shaped T-Junction can be
utilized in optimization

the optimization variablesare X and Y

the other parameters are kept fixed (W = 24 mil, H = 25 mil and
g =9.9)

the design specifications are
IS4/ <1/3, |S,|<1/3

in the frequency range 2 GHz to 16 GHz

the minimax optimizer in OSA90/hope reached the solution
X=21miland Y =21.1 mil
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Microstrip Shaped T-Junction

responses of the optimum shaped T-Junction by Sonnet’sem
(e), by the coarse model (---) and by the enhanced coarse model
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Space M apping Optimization Exploiting Surrogates

a powerful new Space Mapping (SM) optimization algorithm is
presented

it draws upon recent devel opments in both surrogate model -
based optimization and modeling of microwave devices

SM optimization is formulated as a general optimization
problem of a surrogate model

this model is a convex combination of a mapped coarse model
and alinearized fine model

it exploits, in anovel way, alinear frequency-sensitive mapping

during the optimization iterates, the coarse and fine models are
simulated at different sets of frequencies.

this approach is shown to be especially powerful if a significant
response shift exists
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SM Optimization vs. Surrogate M odel Optimization

the optimal fine model design X is obtained by solving

u

X, =argrmmin U(R; (x;))
Axi E

solving this problem using direct optimization methods can be
prohibitive

SM optimization algorithms efficiently solve this design
problem

they exploit the existence of aless accurate but fast coarse
model of the circuit under consideration

amapping X. = P(x;) is established between the two spaces such
that Ry (Xf) = RC(XC)

the space-mapped design x ; isasolution of the nonlinear

system
f(x)=P(x¢) = xc=0

the mapping P(x;) is approximated through Parameter
Extraction (PE)
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SM Optimization vs. Surrogate M odel Optimization
(continued)

the ASM algorithm solves this problem using a quasi-Newton
method

the TRASM algorithm integrates a trust region methodol ogy
with the ASM technique

surrogate mode!l optimization approximates the fine model at the
ith iteration by a surrogate model R(x)) 0 O™

the step suggested is obtained by solving

10 = arg hin U (RS (x{ +h®)) g RER
Eh®) -

h") is validated using fine model simulation

the accuracy of the surrogate model isimproved in every
iteration using the simulated fine model points
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The Surrogate M od€l

our surrogate model is a convex combination of a mapped
coarse model and alinearized fine model

the ith iteration surrogate model is
RO (x1) =20 RY (x¢) + L= 2N (Rs (x) + 30 A x), 20 0[0,1]

the mapped coarse model utilizes the frequency-sensitive
mapping

Ri (X1,0)=R}) (x; , ) =R(PV (Xt 0)), PY (X1, 0}))
where

PO (¢ 0)D_ (B V0,0, GO0
D(xi0)g 097 «Yme; 0 o0

the parameters g O™", VO™, tO o™, O™,
0 00 and " 0 are obtained such that the mapped
coarse model approximates the fine model over a given set of
fine model points v/ () and frequencies w
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The Surrogate M odel (continued)

the mapping parameters are obtained through the optimization
process

[B(I)’ S(I) ] t(l)’ O-(I)’C(I) 1 y(l)] -

0 0
argl]  min H e e - eNT]THD
B,st,ocC7y Plig

where

ey = Rﬂ])(x(fk)) - R; (X(fk)) N X(fk) Oy ®
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| llustration of One Iteration of the Algorithm

AU
y N . U(RQ)(x(€)+9h(”))
r I’p
) U(R¢ (x? + 8 h®))
Yo oo\
B AV R
QP

I, = predicted reduction in the objective function using the
surrogate model

I, =actual reduction in the objective function
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The Algorithm Flowchart
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Neural Space Mapping (NSM) Optimization

exploits the SM-based neuromodeling techniques
(Bandler et al., 1999)

coarse models are used as source of knowledge that reduce the
amount of learning data and improve the generalization and
extrapolation performance

NSM requires areduced set of upfront learning base points

the initial learning base points are selected through sensitivity
analysis using the coarse model

neuromappings are developed iteratively: their generalization
performance is controlled by gradually increasing their
complexity starting with a 3-layer perceptron with 0 hidden
neurons
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Neural Space Mapping (NSM) Optimization Concept

step 1
w R=R
—»| coarse C » X*
xc)' —»| modd ¢
e
step 2
] _/_/_/?_/::____]i___ |
e
e I el
/#/---i------; S St
I SRl S EEEE e I
Xf |___i _______ /‘_/ :: _______ I
2 : //// *
|- xC
X3 X1

(2n + 1 learning base points for a microwave circuit with n
design parameters)
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Neural Space Mapping (NSM) Optimization Concept

step 3
w >’ fine
—> R
X, »  model f
W
N\ ~
neuro- 2> coarse | Re™ R
: XC >
mapping |—»| mode!
t
/W
step 4
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e
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Neural Space Mapping (NSM) Optimization Algorithm

v

COARSE OPTIMIZATION: find the
optimal coarse mode! solution x_" that
generates the desired response R*

R(x.,) =R
v
Form alearning set with B_ = 2n+1 base
points, by selecting 2n adcriti onal points
around x_, following a star distribution
v

Choose the coarse optimal solution as
a starting point for the fine model

X, = X,
’ Include th '
. nclude the new x; in
Calculate tgfe(l:(l r;e response the learning set and
f increase B, by one
?
End Update x;
yes A
no SMBNM OPTIMIZATION:

Find the optimal x, such that
SM BASED NEUROMODELING:
Find the simplest neuromapping P Raven %) = R(P (X)) = R

such that 7

R (0, @)= R(P (X", @)

I=1,..,Bandj=1,.,F
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Neur omappings

Space Mapped neuromapping

SM
neuromapping

Freguency-Dependent Space Mapped neuromapping

FDSM
neuromapping
w > Q.
—>
Xe Lo Peosu [ X
Frequency Mapped neuromapping
FM
neuromapping
Cl)___
P >
X, FM c
> X,
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Neur omappings (continued)

Frequency Space Mapped neuromapping

FSM
neuromapping
» (J

Freguency Partial-Space Mapped neuromapping

FPSM
neuromapping

we chose a unit mapping (X. = X and a. = w) asthe starting
point for the optimization problem
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SM-Based Neuromodel Optimization

we use an SM-based neuromodel as an improved coarse model,
optimizing its parameters to generate the desired response

Raven 1S the SM-based neuromodel response:

RSIVIBN(Xf):[RéMBN(Xf)T Rén\/IBN(Xf)T]T
where
Raven (X¢) =[Re (Xe1, 1) - Rcr(Xch’wch)]TJ:l---’m
with
|:XC'E| (I) * .
'FPY (X w5,w) , j=1F,
cj [

the next iterate is obtained by solving

x; @™ = arg min U (Rgyan (X))

f

if an SMN neuromapping is used to implement P"), the next
iterate can be obtained in a simpler manner by solving

Xf(2l‘l+i+1) :arg IT)](II’]HPS(M (Xf ’W*)— X:;
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HTS Quarter-Wave Parallel Coupled-Line Microstrip Filter
(Westinghouse, 1993)

s
D
L
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NSM Optimization of the HTS Microstrip Filter

specifications
|S1] = 0.95 in the passband and |Sy;| < 0.05 in the stopband,
where the stopband includes frequencies below 3.967 GHz
and above 4.099 GHz, and the passband liesin the range
[4.008GHz, 4.058GHZ]

“coarse” model: OSA90/hope empirical models

“fine” model: Sonnet'ssmlJ with high resolution grid

we takeLy = 50 mil,H = 20 mil, W = 7 mil,& = 23.425, loss
tangent = 8107, the metalization is considered lossless

the design parameters ate= [L; L, L3S S S '
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NSM Optimization of the HT S Filter (continued)
coarse and fine model responses at the optimal coarse solution,
X, =[188.33 197.98 188.58 21.97 99.12 111.67] ' (mils)

OSA90/hoped (=) and em[] ()

AR

N
o

[1S1]in dB
o
S

A
5

-50

€]

-603 901 3.966 4,031 4,096 4.161

frequency (GHz)
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NSM Optimization of the HT S Filter (continued)

theinitial 2n+1 points are chosen by performing sensitivity
analysis on the coarse model: a 3% deviation from X. for Ly, Ly,
and Lsisused, whilea20% isusedfor S, S, and S

coarse and fine model responses at base points:

OSA90/hopel]

AN o YA
TR

-30

Su10indB

-40

-50

_603.901 3.966 4.031 4.096 4.161

S Py

I/

T
/

em(]

S indB

>4

-40

-60
3.901 3.966 4.031 4.096 4.161

frequency (GHz)
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NSM Optimization of the HT S Filter (continued)

Learning errors at base points:

before any neuromapping
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NSM Optimization of the HT S Filter (continued)

Learning errors at base points:

mapping wand L, with a3LP:7-4-2
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NSM Optimization of the HT S Filter (continued)

eml] (¢) and FPSM 7-5-3 (=) model responses at the next point
predicted after the first NSM iteration

x; ¥ = [185.37 195.01 184.24 21.04 86.36 91.39] ' (mils)
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NSM Optimization of the HT S Filter (continued)

eml] (¢) and FPSM 7-5-3 (=) model responses at the NSM
solution using a fine frequency sweep

[CS;CindB

(OS]

-10

-20

-30

-40

-50

-60

3.901

3.966

4.031
frequency (GH2)

4.096 4.161

0.8

0.6

0.4

0.2

@@®

<]
@

[
YOO e eooe

0

3.901

3,066

4.031
frequency (GHz)

4.096 4.161

00-14-35



Simulation Optimization Systems Research Laboratory
McMaster University

NSM Optimization of the HT S Filter (continued)

eml] (¢) and FPSM 7-5-3 (=) model responses at the NSM
solution in the passband using a fine frequency sweep
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Conclusions

we review a comprehensive framework called Generalized
Space mapping (GSM) to engineering device modeling

in GSM we utilize afew relevant full-wave EM simulations to
match the responses of the fine model and the coarse model over
a designable region of parameters and frequency

GSM generalizes the Space Mapping (SM), the Freguency
Space Mapping (FSM) and the Multiple Space Mapping (MSM)
concepts to build a new engineering device modeling framework

two fundamental concepts are presented: one is a basic Space
Mapping Super Model (SMSM) and the other isabasic
Freguency-Space M apping Super Model (FSMSM)

MSM can be combined with SMSM and FSMSM to provide a
powerful and reliable modeling tool for microwave devices

anovel SM optimization algorithm based on surrogate modelsis
presented

SM optimization is formulated as a general optimization
problem of a surrogate model

the surrogate model is a convex combination of a mapped coarse
model and alinearized fine model

00-14-37



Simulation Optimization Systems Research Laboratory
McMaster University

Conclusions (continued)

it exploits, in anovel way, alinearized frequency-sensitive
mapping

we present an innovative algorithm for EM optimization based
on Space Mapping technology and Artificial Neural Networks

Neural Space Mapping (NSM) optimization exploits our SM-
based neuromodeling techniques

NSM does not require parameter extraction to predict the next
point

an initial mapping is established by performing upfront fine
model analysis at a reduced number of base points

coarse model sensitivity is exploited to select those base points

Huber optimization is used to train simple SM-based
neuromodels at each iteration

the SM-based neuromodels are devel oped without using testing
points. their generalization performance is controlled by
gradually increasing their complexity starting with a 3-layer
perceptron with O hidden neurons

an HTSfilter illustrate our NSM optimization technique
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