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Abstract

Electromagnetics (EM) based device modeling and circuit
optimization through Artificial Neural Network (ANN) and
Space Mapping (SM) technologies are reviewed.  These two
concepts continue to promise important benefits in the next
generation of design optimization methodologies.  ANNs can
learn from and generalize patterns in data and model nonlinear
relationships.  On the other hand, Aggressive Space Mapping
(ASM) optimization closely follows the traditional experience
and intuition of designers, while being rigorously grounded
mathematically.  Current progress in the development of suitable
algorithms and software engines are presented.  The ANN and
SM concepts address the contradictory challenge of exploitation
of device models for CAD that are both accurate and fast.
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Outline

Generalized Space Mapping (GSM) tableau approach to
engineering device modeling is reviewed

new work on Space Mapping optimization exploiting surrogate
models is described

a Neural Space Mapping (NSM) optimization approach
exploiting our SM-based neuromodeling techniques is presented
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Generalized Space Mapping (GSM)

GSM is a comprehensive framework for engineering device
modeling

GSM exploits the Space Mapping (SM), the Frequency Space
Mapping (FSM) (Bandler et al., 1994) and the Multiple Space
Mapping (MSM) (Bandler et al., 1998) concepts to build a new
engineering device modeling framework

two cases are considered:

the basic Space Mapping Super Model (SMSM) concept
maps the device parameters

the Frequency-Space Mapping Super Model (FSMSM)
concept maps the device parameters as well as frequency

two variations of MSM are presented (Bandler et al., 1999):

MSM for Device Responses (MSMDR) develops a
different mapping for each subset of responses

MSM for Frequency Intervals (MSMFI) develops a different
mapping for each frequency interval
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Multiple Space Mapping (MSM) Concept

MSM for Frequency Intervals (MSMFI)
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Mathematical Formulation for GSM

the kth mapping targeting the sub-response kR  or the response R
in the kth frequency sub-range is given by
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Microstrip Shaped T-Junction

the fine and coarse models
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Microstrip Shaped T-Junction

the region of interest

Parameter Minimum value Maximum value

H 15 mil 25 mil

X 5 mil 15 mil

Y 5 mil 15 mil

r 8 10

the frequency range is 2 GHz to 20 GHz with a step of 2 GHz

the number of base points is 9 and the number of test points is
50

the width W of the input lines is determined in terms of H and r

so that the characteristic impedance of the input lines is 50 ohm

the width W1 is taken as 1/3 of the width W

the width W2 is obtained so that the characteristic impedance of
the microstrip line after the step connected to port 2 is twice that
of the microstrip line after the step connected to port 1
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Microstrip Shaped T-Junction

MSM for Frequency Intervals (MSMFI) was developed to
enhance the accuracy of the T-Junction coarse model

the total frequency range was divided into two intervals: 2 GHz
to 16 GHz and 16 GHz to 20 GHz

the mapping parameters are

2 GHz to 16 GHz 16 GHz to 20 GHz
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Microstrip Shaped T-Junction

the responses of the shaped T-Junction at two test points in the
region of interest by Sonnet’s em ( �, by the coarse model (---)
DQG�E\�WKH�HQKDQFHG�FRDUVH�PRGHO�� �
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Microstrip Shaped T-Junction

the error in S11 and in S22 of the shaped T-Junction coarse model
at the test points
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the error in S11 and in S22 of the shaped T-Junction enhanced
coarse model at the test points
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Microstrip Shaped T-Junction

the enhanced coarse model for the shaped T-Junction can be
utilized in optimization

the optimization variables are X and Y

the other parameters are kept fixed (W = 24 mil, H = 25 mil and
9.9=r )

the design specifications are

3/1,3/1 2211 ≤≤ SS

in the frequency range 2 GHz to 16 GHz

the minimax optimizer in OSA90/hope reached the solution

X = 2.1 mil and Y = 21.1 mil
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Microstrip Shaped T-Junction

responses of the optimum shaped T-Junction by Sonnet’s em
( �, by the coarse model (---) and by the enhanced coarse model
� �
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Space Mapping Optimization Exploiting Surrogates

a powerful new Space Mapping (SM) optimization algorithm is
presented

it draws upon recent developments in both surrogate model-
based optimization and modeling of microwave devices

SM optimization is formulated as a general optimization
problem of a surrogate model

this model is a convex combination of a mapped coarse model
and a linearized fine model

it exploits, in a novel way, a linear frequency-sensitive mapping

during the optimization iterates, the coarse and fine models are
simulated at different sets of frequencies.

this approach is shown to be especially powerful if a significant
response shift exists
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SM Optimization vs. Surrogate Model Optimization

the optimal fine model design x*
f  is obtained by solving
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solving this problem using direct optimization methods can be
prohibitive

SM optimization algorithms efficiently solve this design
problem

they exploit the existence of a less accurate but fast coarse
model of the circuit under consideration

a mapping xc = P(xf) is established between the two spaces such
that Rf (xf) ≈ Rc(xc)

the space-mapped design x f  is a solution of the nonlinear

system
xxPxf *)()( cff −= =0

the mapping )(xP f  is approximated through Parameter
Extraction (PE)
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SM Optimization vs. Surrogate Model Optimization
(continued)

the ASM algorithm solves this problem using a quasi-Newton
method

the TRASM algorithm integrates a trust region methodology
with the ASM technique

surrogate model optimization approximates the fine model at the
ith iteration by a surrogate model Rs

(i)(xf) ∈ ℜm×1

the step suggested is obtained by solving
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h(i) is validated using fine model simulation

the accuracy of the surrogate model is improved in every
iteration using the simulated fine model points
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The Surrogate Model

our surrogate model is a convex combination of a mapped
coarse model and a linearized fine model

the ith iteration surrogate model is
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ℜ∈ ×11)(i  and ℜ∈ ×11)(i  are obtained such that the mapped
coarse model approximates the fine model over a given set of
fine model points V i)(  and frequencies ω
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The Surrogate Model (continued)

the mapping parameters are obtained through the optimization
process
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Illustration of One Iteration of the Algorithm

rp = predicted reduction in the objective function using the
surrogate model

ra = actual reduction in the objective function

θ
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The Algorithm Flowchart

Start

Surrogate model
optimization

Initialization

Mapping parameters
extraction

Success
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no
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End

Accept suggested
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Neural Space Mapping (NSM) Optimization

exploits the SM-based neuromodeling techniques
(Bandler et al., 1999)

coarse models are used as source of knowledge that reduce the
amount of learning data and improve the generalization and
extrapolation performance

NSM requires a reduced set of upfront learning base points

the initial learning base points are selected through sensitivity
analysis using the coarse model

neuromappings are developed iteratively: their generalization
performance is controlled by gradually increasing their
complexity starting with a 3-layer perceptron with 0 hidden
neurons
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Neural Space Mapping (NSM) Optimization Concept

step 1

ω Rc ≈ R*
coarse
modelxc

xc
*

step 2

xf 1

xf 2

xf 3

xc
*

(2n + 1 learning base points for a microwave circuit with n
design parameters)
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Neural Space Mapping (NSM) Optimization Concept

step 3
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mapping

fine
model
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Neural Space Mapping (NSM) Optimization Algorithm

Start

Calculate the fine response
Rf (xf )

SM BASED NEUROMODELING:
Find the simplest neuromapping P

such that

Rf (xf 
(l) , ωj) ≈  Rc(P (xf

(l) , ωj))

l = 1,..., Bp and j = 1,..., Fp

COARSE OPTIMIZATION: find the
optimal coarse model solution xc

* that
generates the desired response R*

Rc(xc
* )  =  R*

Form a learning set with Bp = 2n+1 base
points, by selecting 2n additional points
around xc

*, following a star distribution

Update xf

Choose the coarse optimal solution as
a starting point for the fine model

xf  =  xc
*

SMBNM OPTIMIZATION:
Find the optimal xf such that

RSMBN (xf ) = Rc(P (xf )) ≈  R*

Rf (xf ) ≈  R*

no

yes
End

Include the new xf  in
the learning set and
increase Bp by one
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Neuromappings

Space Mapped neuromapping

PSM

SM
neuromapping
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Neuromappings (continued)

Frequency Space Mapped neuromapping

PFSM

FSM
neuromapping

ω
xf

ωc

xc

Frequency Partial-Space Mapped neuromapping

PFPSM

FPSM
neuromapping

ω
xf

ωc

xcxf
•

we chose a unit mapping (xc = x f  and ωc = ω) as the starting
point for the optimization problem
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SM-Based Neuromodel Optimization

we use an SM-based neuromodel as an improved coarse model,
optimizing its parameters to generate the desired response

RSMBN  is the SM-based neuromodel response:
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HTS Quarter-Wave Parallel Coupled-Line Microstrip Filter
(Westinghouse, 1993)
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NSM Optimization of the HTS Microstrip Filter

specifications

|S21| ≥ 0.95 in the passband and |S21| ≤ 0.05 in the stopband,

where the stopband includes frequencies below 3.967 GHz
and above 4.099 GHz, and the passband lies in the range
[4.008GHz, 4.058GHz]

“coarse” model: OSA90/hope empirical models

“fine” model: Sonnet’s em with high resolution grid

we take L0 = 50 mil, H = 20 mil, W = 7 mil, εr = 23.425, loss
tangent = 3×10−5; the metalization is considered lossless

the design parameters are xf = [L1 L2 L3 S1 S2 S3] 
T
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NSM Optimization of the HTS Filter (continued)

coarse and fine model responses at the optimal coarse solution,

xc
* = [188.33  197.98  188.58  21.97  99.12  111.67] T  (mils)

OSA90/hope (−) and em (•)
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NSM Optimization of the HTS Filter (continued)

the initial 2n+1 points are chosen by performing sensitivity
analysis on the coarse model: a 3% deviation from xc

* for L1, L2,
and L3 is used, while a 20% is used for S1, S2, and S3

coarse and fine model responses at base points:
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NSM Optimization of the HTS Filter (continued)

Learning errors at base points:

before any neuromapping
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NSM Optimization of the HTS Filter (continued)

Learning errors at base points:

mapping ω and L1 with a 3LP:7-4-2
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NSM Optimization of the HTS Filter (continued)

em (•) and FPSM 7-5-3 (−) model responses at the next point
predicted after the first NSM iteration

xf 
(14) = [185.37  195.01  184.24  21.04  86.36  91.39] T  (mils)
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NSM Optimization of the HTS Filter (continued)

em (•) and FPSM 7-5-3 (−) model responses at the NSM
solution using a fine frequency sweep
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NSM Optimization of the HTS Filter (continued)

em (•) and FPSM 7-5-3 (−) model responses at the NSM
solution in the passband using a fine frequency sweep
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Conclusions

we review a comprehensive framework called Generalized
Space mapping (GSM) to engineering device modeling

in GSM we utilize a few relevant full-wave EM simulations to
match the responses of the fine model and the coarse model over
a designable region of parameters and frequency

GSM generalizes the Space Mapping (SM), the Frequency
Space Mapping (FSM) and the Multiple Space Mapping (MSM)
concepts to build a new engineering device modeling framework

two fundamental concepts are presented: one is a basic Space
Mapping Super Model (SMSM) and the other is a basic
Frequency-Space Mapping Super Model (FSMSM)

MSM can be combined with SMSM and FSMSM to provide a
powerful and reliable modeling tool for microwave devices

a novel SM optimization algorithm based on surrogate models is
presented

SM optimization is formulated as a general optimization
problem of a surrogate model

the surrogate model is a convex combination of a mapped coarse
model and a linearized fine model
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Conclusions (continued)

it exploits, in a novel way, a linearized frequency-sensitive
mapping

we present an innovative algorithm for EM optimization based
on Space Mapping technology and Artificial Neural Networks

Neural Space Mapping (NSM) optimization exploits our SM-
based neuromodeling techniques

NSM does not require parameter extraction to predict the next
point

an initial mapping is established by performing upfront fine
model analysis at a reduced number of base points

coarse model sensitivity is exploited to select those base points

Huber optimization is used to train simple SM-based
neuromodels at each iteration

the SM-based neuromodels are developed without using testing
points: their generalization performance is controlled by
gradually increasing their complexity starting with a 3-layer
perceptron with 0 hidden neurons

an HTS filter illustrate our NSM optimization technique
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