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Problem Definition

it is required to optimize a detailed or “fine” model of a microwave circuit

utilizing traditional direct optimization is not possible because of intensive simulation time

Space Mapping (SM) optimization exploits the existence of a coarse model of the circuit

we present a novel SM algorithm that integrates SM optimization and “surrogate model” optimization

the algorithm utilizes a surrogate model expressed as a convex combination between a mapped coarse model and a linearized fine model

we also present a novel approach for utilizing a frequency-sensitive mapping

a number of examples illustrate the algorithm

Basic Definitions and Notation

n : number of designable parameters
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SM Optimization vs. Surrogate Model Optimization

the optimal fine model design 
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solving this problem using direct optimization methods can be prohibitive 

SM optimization algorithms efficiently solve this design problem

they exploit the existence of a less accurate but fast coarse model of the circuit under consideration

a mapping 
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the space-mapped design 
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the mapping 
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SM Optimization vs. Surrogate Model Optimization (Continued)

the ASM algorithm solves this problem using a quasi-Newton method

the TRASM algorithm integrates a trust region methodology with the ASM technique

surrogate model optimization approximates the fine model at the ith iteration by a surrogate model 
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the step suggested is obtained by solving
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the accuracy of the surrogate model is improved in every iteration using the simulated fine model points

The Surrogate Model

our surrogate model is a convex combination of a mapped coarse model and a linearized fine model

the ith iteration surrogate model is 
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 EMBED Equation.3  [image: image36.wmf][

]

1

0,

)

(

 

λ

i

Î


the mapped coarse model utilizes the frequency-sensitive mapping
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the parameters 
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The Surrogate Model (Continued)

the mapping parameters are obtained through the optimization process
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The Motivation for Utilizing a Frequency-Sensitive Mapping

utilizing a frequency sensitive mapping makes the parameter extraction problem better conditioned

[image: image1.wmf]
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The Motivation for Utilizing a Frequency-Sensitive Mapping

(Continued)

utilizing a frequency-sensitive mapping enables indirect estimation of fine model derivatives

the Jacobian of the mapped coarse model responses at a point 
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Updating the Trust Region Size

predicted reduction in the objective function 

rp =U(
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actual reduction in the objective function 

ra = U(
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Updating the Surrogate Parameter

the mapped coarse model error 
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the linearized fine model error 
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the surrogate model parameter update is given by  
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The Stopping Criterion

the algorithm terminates if the step size becomes sufficiently small or if the algorithm fails to make any progress for n+1 consecutive iterations 
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Illustration of One Iteration of the Algorithm

rp =
predicted reduction in the objective function using the surrogate model
ra =
actual reduction in the objective function
The Algorithm

Step 1. Given 
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Step 2. Construct 
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Step 3. Obtain the mapping parameters through optimization

Step 4. Obtain the suggested step 
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Step 5. If 
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Step 6. Update 
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Step 7. If the stopping criterion is satisfied stop

Step 8. Set i=i+1 and go to Step 2

The Algorithm Flowchart
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Two-Section 10:1 Capacitively-Loaded Impedance Transformer (Bandler, 1969)

“fine model”
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“coarse model”
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Two-Section 10:1 Capacitively-Loaded Impedance Transformer (Continued)
design specifications are

(S11(( 0.50  for  0.5 GHz ( ( (1.5 GHz

the designable parameters are the electrical lengths of the two transmission lines at ( =1.0 GHz

the characteristic impedances are kept fixed at their optimal values

both the coarse and fine models make use of the ideal transmission line model available in OSA90/hope

eleven frequency points are simulated per sweep

five iterations are executed (only two successful)

number of fine model simulations is seven

the real and imaginary parts of S11  are used in extracting the mapping parameters 

initial trust region size is 
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the extraction radius is 
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Two-Section 10:1 Capacitively-Loaded Impedance Transformer (Continued)

the final mapping
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L1
90.0000
81.9000
81.59880

L2
90.0000
81.9000
74.38324

all values are in degrees

Two-Section 10:1 Capacitively-Loaded Impedance Transformer (Continued)

the initial design
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the second design

[image: image111.wmf]
Two-Section 10:1 Capacitively-Loaded Impedance Transformer (Continued)
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the final design

Two-Section 10:1 Capacitively-Loaded Impedance Transformer (Continued)

the objective function in each iteration

[image: image113.wmf]
The Double-Folded Stub Filter

(Rautio, 1992)

the fine model utilizes Sonnet’s em
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the coarse model exploits the microstrip line and microstrip T-junction models available in OSA90/hope

the coupling between the folded stubs and the microstrip line is simulated using equivalent capacitors

the values of these capacitors are determined using Walker’s formulas (Walker et al., 1990)

Jansen’s microstrip bend model is used to model the folding effect of the stub (Jansen et al., 1983)

The Double-Folded Stub Filter (Continued)
the coarse model
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design specifications are

(S21(( (3 dB  for  ( ( 9.5 GHz  and 16.5 GHz ( (
(S21(( (30 dB  for  12 GHz ( ( ( 14 GHz

designable parameters are L1, L2 and S
W1 and W2 are fixed at 4.8 mil

the real and imaginary parts of  S21 are used in extracting the mapping parameters

The Double-Folded Stub Filter (Continued)
eleven frequency points per sweep are utilized

initial trust region size is 
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extraction radius is 
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the width is scaled by a factor of 6.0 to make the problem better conditioned

the interpolation option of Empipe is disabled for this example

The Double-Folded Stub Filter Results

the grid size used is 1.6 mils for each parameter

the algorithm required 11 successful iterations (16 total iterations) with a total of 18 calls to Empipe (18 em simulations)
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The Double-Folded Stub Filter Results (Continued)
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The Double-Folded Stub Filter Results (Continued)

the objective function in each iteration
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The HTS Filter

(Bandler et al., 1995)
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design specifications are

(S21( ( 0.05  for  (  ( 3.967 GHz  and 4.099 GHz ( (
(S21( ( 0.95   for  4.008 GHz ( (  ( 4.058 GHz

designable parameters are L1, L2, L3, S1, S2 and S3
we take L0 = 50 mil and W = 7 mil

the coarse model exploits the empirical models of microstrip lines, coupled lines and open stubs available in OSA90/hope 

the fine model employs Sonnet’s em through Empipe

The HTS Filter (Continued)

the coarse model
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the real and imaginary parts of both S11 and S21 are utilized in extracting the mapping parameters

the initial trust region is 
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the interpolation option of Empipe is disabled to make the optimization time reasonable

The HTS Filter (The First Case)

the problem is solved for two different cases

first, the substrate is assumed lossless and a relatively coarse grid size is used (1.0mil(1.75mil)

the fine model is simulated at 16 frequency points per sweep

starting from the snapped optimal coarse design, the final design is reached in 7 iterations only

a total of 7 fine model simulations are used

The HTS Filter (The First Case)

the initial and final response of the fine model

[image: image120.wmf]0.5

0.7

0.9

1.1

1.3

1.5

frequency (GHz)

0

0.2

0.4

0.6

0.8

½

S

11

½


[image: image121.wmf]

The HTS Filter (The First Case)

the fine model response at the end of the first iteration
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the objective function in every iteration

The HTS Filter (The Second Case)

the problem is resolved assuming a lossy substrate (loss tangent=3.0e-5) and a finer grid (1.0mil(1.0mil)

the fine model is simulated at 9 frequency points per sweep

starting from the snapped optimal coarse design, the final design is reached in 4 iterations only

a total of 5 fine model simulations are used

The HTS Filter (The Second Case)

the final fine model response 
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the objective function in each iteration
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Conclusions

we present a novel SM optimization algorithm for microwave circuits

SM optimization is formulated as a general optimization problem of a surrogate model 

the surrogate model utilized is a convex combination of a linearized fine model and a mapped coarse model

we also integrated, for the first time, a linearized frequency-sensitive mapping with SM optimization

frequency-sensitive mappings make the parameter extraction problem better conditioned

the algorithm is illustrated through a number of examples

the new SMX system incorporates our results
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