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Abstract

Electromagnetics (EM) based device modeling and circuit optimization through Space

Mapping (SM) technologies are reviewed. The SM concept continues to promise important

benefits in the next generation of design optimization methodologies. Artificial Neural

Networks can be incorporated into the SM optimization strategies. Aggressive Space

Mapping (ASM) optimization closely follows the traditional experience and intuition of

designers, while being rigorously grounded mathematically. Current progress in the

development of suitable algorithms and software engines are presented. The SM concept

addresses the contradictory challenge of exploitation of device models for CAD that are both

accurate and fast.



Outline

a comprehensive Generalized Space Mapping (GSM) tableau approach (Bandler et al., 1999)

to engineering device modeling exploiting Frequency Space Mapping (FSM) (Bandler et al., 

1995) and the Multiple Space Mapping (MSM) (Bandler et al., 1998) is reviewed

a Neural Space Mapping (NSM) optimization approach exploiting our SM-based 

neuromodeling techniques is presented (Bakr et al., 2000)

new work on Space Mapping optimization exploiting surrogate models is described (Bakr et 

al., 2000)

a state-of-the-art engineering optimization system including the latest Space Mapping 

technology, the SMX system, is described (Bandler et al., 2000)
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Multiple Space Mapping (MSM) Concept

MSM for Frequency Intervals (MSMFI)
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Mathematical Formulation for GSM

(Bandler et al., 1999)

the kth mapping targeting the sub-response or the response R in the kth frequency sub-range 

is given by

or, in matrix form, assuming a linear mapping

the mapping parameters                                     can be evaluated, directly or indirectly, by 

solving the optimization problem

where m is the number of base points selected in the fine model space and      is an error 

vector given by

Simulation Optimization Systems Research Laboratory
McMaster University

),(),( ωω fkckck xPx =

















+








=









ωσδω

f

k
T
k

kk

k

k

ck

ck
x

t

sBcx

},,,,,{ kkkkkk δσtsBc

TT
km

T

k

T

k

kkkkkk δσ
][ 21

,

min
,

eee
tsBc  ,,,



kje

mjωω ck
j

ckc
j

ffkj ,...,2,1,)(),( )()( =−= ,xRxRe



Microstrip Shaped T-Junction

the fine and coarse models
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Microstrip Shaped T-Junction

the region of interest

15 mil  H  25 mil

5 mil  X  15 mil

5 mil  Y  15 mil

8   10

the frequency range is 2 GHz to 20 GHz with a step of 2 GHz

the number of base points is 9 and the number of test points is 50

the width W of the input lines is determined in terms of H and  so that the characteristic 

impedance of the input lines is 50 ohm

the width W1 is taken as 1/3 of the width W

the width W2 is obtained so that the characteristic impedance of the microstrip line after the 

step connected to port 2 is twice that of the microstrip line after the step connected to port 1
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Microstrip Shaped T-Junction

MSM for Frequency Intervals (MSMFI) was developed to enhance the accuracy of the T-

Junction coarse model

the total frequency range was divided into two intervals: 2-16 GHz and 16-20 GHz

the mapping parameters are
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Microstrip Shaped T-Junction

the responses of the shaped T-Junction at two test points in the region of interest by Sonnet’s 

em (•), by the coarse model (---) and by the enhanced coarse model (—)
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Microstrip Shaped T-Junction

the enhanced coarse model for the shaped T-Junction can be utilized in optimization

the optimization variables are X and Y

the other parameters are kept fixed (W = 24 mil, H = 25 mil and er = 9.9)

the design specifications are

S11 1/3,  S22 1/3

in the frequency range 2 GHz to 16 GHz

the minimax optimizer in OSA90/hope reached the solution 

X = 2.1 mil and Y = 21.1 mil
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Microstrip Shaped T-Junction

responses of the optimal shaped T-Junction by Sonnet’s em (•), by the coarse model (---) and 

by the enhanced coarse model (—)
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Neural Space Mapping (NSM) Optimization

(Bakr et al., 2000)

exploits the SM-based neuromodeling techniques 

(Bandler et al., 1999)

coarse models are used as sources of knowledge that reduce the amount of learning data and 

improve the generalization and extrapolation performance

NSM requires a reduced set of upfront learning base points

the initial learning base points are selected through sensitivity analysis using the coarse 

model

neuromappings are developed iteratively: their generalization performance is controlled by 

gradually increasing their complexity starting with a 3-layer perceptron with 0 hidden 

neurons
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Neural Space Mapping (NSM) Optimization Concept

step 1 step 2

(2n + 1 learning base points for a 

microwave circuit with n design 

parameters)
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Neural Space Mapping (NSM) Optimization Concept (continued)

step 3 step 4
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Neural Space Mapping (NSM) Optimization Algorithm
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HTS Quarter-Wave Parallel Coupled-Line Microstrip Filter

(Westinghouse, 1993)

we take L0 = 50 mil, H = 20 mil, 

W = 7 mil, er = 23.425, loss 

tangent = 310−5; the 

metalization is considered 

lossless 

the design parameters are 

xf = [L1 L2 L3 S1 S2 S3] 
T
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NSM Optimization of the HTS Microstrip Filter

specifications

|S21|  0.95 for 4.008 GHz  f  4.058 GHz

|S21|  0.05 for f  3.967 GHz and f  4.099 GHz 

“fine” model: Sonnet’s em with high resolution grid 

“coarse” model: OSA90/hope built-in models of open circuits, microstrip lines and 

coupled microstrip lines
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NSM Optimization of the HTS Filter (continued)

coarse and fine model responses at the optimal coarse solution 

xc
* = [188.33  197.98  188.58  21.97  99.12  111.67] T (mils)

OSA90/hope (−) and em (•)
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NSM Optimization of the HTS Filter (continued)

em (•) and FPSM 7-5-3 (−) model responses at the NSM solution using a fine frequency 

sweep
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Space Mapping Optimization Exploiting Surrogates

(Bakr et al., 2000)

a powerful new Space Mapping (SM) optimization algorithm has been developed

it draws upon recent developments in both surrogate model-based optimization and modeling 

of microwave devices

SM optimization is formulated as a general optimization problem of a surrogate model

this model is a convex combination of a mapped coarse model and a linearized fine model

it exploits, in a novel way, a linear frequency-sensitive mapping

during the optimization iterates, the coarse and fine models are simulated at different sets of 

frequencies.  

this approach is shown to be especially powerful if a significant response shift exists
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The Surrogate Model

our surrogate model is a convex combination of a mapped coarse model and a linearized fine 

model

the ith iteration surrogate model is

the mapped coarse model utilizes the frequency-sensitive mapping

=

where

the parameters B(i)  nn, s(i)  n1, t (i)  n1, c(i)  n1,  (i)  11 and  (i)  11

are obtained such that the mapped coarse model approximates the fine model over a given 

set of fine model points V (i) and frequencies w
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The Surrogate Model (continued)

the mapping parameters are obtained through the optimization process

where
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The Algorithm Flowchart
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The SMX System 

(Bandler et al., 2000)

SMX is a new generation engineering optimization system

currently it provides the following optimization capabilities

minimax

Huber

Space Mapping using Surrogate Models (Bakr et al., 2000)

currently it can be interfaced to

OSA90

user supplied executable programs
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Object Oriented SMX System Design: Data Flow Between Modules
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Object Oriented SMX System Design (continued) 

optimizer object: general optimizers
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GetNorm

FDF

GetError
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Optimizer

GetNorm

SetHuberThreshold
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Huber

GetNorm

...

MinMax
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Object Oriented SMX System Design (continued) 

simulator object: interface to simulators

WriteInputFile

Simulate

GetResponses

...

OSA90

WriteInputFile

Simulate

GetResponses

...

OtherSimulator

WriteInputFile

Simulate

GetResponses

...

em

WriteInputFile

Simulate

GetResponses

...

Simulator
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Object Oriented SMX System Design (continued) 

model object: enhanced wrapper of simulators

SetFrequencies

SetParameters

SetLambda

GetResponses

...

SurrogateModel

SetFrequencies

SetParameters

GetResponses

...

Model
Simulator
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SMX Example: A Two-section 10:1 Capacitively-loaded Impedance Transformer Design

RL=10

L1 L2

Zin

specifications

S11 0.50  for  0.5 GHz  w 1.5 GHz

RL=10

L1 L2

Zin C2
C3C1

fine model

coarse model
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Object Oriented SMX System Example: Problem Setup Wizard 

step 1: project setup
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Object Oriented SMX System Example: Problem Setup Wizard 

step 2: responses and specifications
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Object Oriented SMX System Example: Problem Setup Wizard 

step 3: parameter setup
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Object Oriented SMX System Example: Initial and Optimal Coarse Model Responses
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Object Oriented SMX System Example: Initial and Optimal Fine Model Responses 
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Object Oriented SMX System Example: Objective Function Value 
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Conclusions

we review Generalized Space Mapping (GSM) as a new engineering device modeling 

framework that exploits Frequency Space Mapping (FSM) and Multiple Space Mapping 

(MSM)

we review an innovative algorithm for EM optimization based on Space Mapping 

technology and Artificial Neural Networks

Neural Space Mapping (NSM) optimization exploits our SM-based neuromodeling 

techniques 

a novel SM optimization algorithm based on surrogate models is presented

the surrogate model is a convex combination of a mapped coarse model and a linearized fine 

model

the state-of-the-art SMX engineering optimization system including Space Mapping 

technology is briefly reviewed
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