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Abstract 

The design of SMX, a state-of-the-art engineering optimization CAD system is described.  

Object-oriented technology is employed to design the system.  The architecture and the modules of the 

SMX system are described in the Unified Modeling Language (UML).  A two-section impedance 

transformer design is illustrated as an example of the SMX system.   

I. INTRODUCTION 

In the area of analog circuit design different kinds of simulators and optimizers are utilized [1].  

During the optimization procedure, specifications, frequency bands and all kinds of optimization 

parameters need to be input to the simulator.  After each simulation, the responses need to be retrieved 

into the optimization loop.  This procedure is very tedious and error-prone.  The SMX system is a state-

of-the-art automated optimization computer aided design system.  It integrates the latest optimization 

algorithm [2], automated data transfer, commercial and/or user supplied simulator drivers and built-in 

optimizers.  It supplies an easy and practical frequency-domain circuit design procedure.  SMX also 

provides a platform for new optimization algorithms and CAD methodologies.   
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The SMX system is described in UML [3].  Using this language, a complicated system can be 

easily decomposed into relatively independent small objects without losing readability and intuitiveness.  

These objects interact with each other.  The structure of each object can also be represented in UML. 

The SMX system takes full advantage of the multi-thread capability of Microsoft Windows 

operating system [4].  The user-friendly interface can respond smoothly while the SMX core is running in 

a different thread in the background.  Synchronization and communication between threads are properly 

arranged.  The SMX system is capable of optimizing while showing the intermediate results and 

interacting with user. 

II. SYSTEM ARCHITECTURE 

The SMX system consists of different modules.  Here the module is an instance of certain object-

oriented class.  Each module can carry out certain functionality.  It includes certain data structures 

describing the properties of the object.  These modules interact with each other.  The data is sent back and 

forth between these modules as shown in Fig. 1.   

The SMX user interface and algorithm core SMX_Engine run in two separate threads 

concurrently.  The user defined optimization parameters and control signals are sent into SMX_Engine.  

SMX_Engine then performs optimization and sends back the progress, the current status, responses etc., 

to the user interface.  SMX_Engine can optimize a model using either classic optimization methods such 

as minimax or the state-of-the-art Space Mapping technology [2,5].   

III. RESOURCES SYNCHRONIZATION 

Since the interface and algorithm run in two threads, resource accessing between the threads 

becomes a problem.  Having two or more threads simultaneously access the same data can lead to 

undesirable and unpredictable results. For example, one thread could be updating the contents of a 

structure while another thread is reading the contents of the same structure.  It is unknown what data the 

reading thread will receive: the old data, the new data, or possibly a mixture of both.   
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The MFC CEvent class [6] is used to signal the other threads that the tasks are done or the 

resources are available.  For example, when an optimization begins, an event is set to notify the interface 

that the optimization is running.  Once the optimization finishes, the event is reset so that the interface 

knows the results are available.  

IV. ALGORITHM CORE: SMX ENGINE 

The core of the SMX system, SMX_Engine is an object-oriented implementation of space 

mapping involving surrogate models.  The SMX_Engine class has the interface to setup optimization 

parameters and constraints for both the coarse and fine models.  After setup, the coarse model is 

optimized by the member function OptimizeCoarseModel.  This function uses 

m_pCoarseModelOptimizer, a pointer to a minimax optimizer to perform the optimization.  Then the 

member function OptimizeSurrogate is called to optimize the surrogate model using space-mapping 

technology.  To carry out space mapping, three base classes, Optimizer, Simulator and Model, need to be 

built. 

The Optimizer base class is an abstract class.  It provides the interface for standard optimization 

routines.  With the override of optimization routines, additional parameter setup and objective function, 

the Huber, Minimax or other optimization classes can be derived from Optimizer.  Some of the 

important functions in the optimizer are GetNorm, GetErrors, FDF and SetConstraintMatrix.  

Different optimizers use different norms as their objective functions.  The purely virtual function 

GetNorm is overridden to obtain the norm for different optimizer.  FDF gets the error values and their 

derivatives using perturbation.  It calls the GetErrors for evaluating the errors.  SetConstrantMatrix sets 

the constraints for the optimizer in a matrix form.  The inheritance relation of the Optimizer is shown in 

Fig. 2. 

The Simulator class is a parent class for different simulators.  Many commercial simulators are 

currently available.  Interface functions are overridden for each new derived simulator class.  Additional 

parameters may also be added.  The Simulator class heritage is shown in Fig. 3.  More simulators can be 
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added in the future.  Regardless of the simulator type, the easiest and most common way to interact with it 

is to exchange data through disk files.  The procedure to interface to any simulator is divided into three 

steps: writing input file for simulator (WriteInputFile), simulating it (Simulate) and obtaining the results 

(GetResponses).  To automate the whole processing, commercial or user supplied simulators need to be 

driven from the SMX system.  The advantage of Microsoft Windows operation system makes this 

feasible.  Any window in the Microsoft Windows operating system is an object. As long as we can obtain 

a pointer to the window object, we could manipulate the window object by sending messages to it.  The 

window object accepts the messages and responds just like interacting with a human being through mouse 

clicks and keyboard inputs.  

The new optimization method involves SurrogateModel which is derived from a base Model 

class.  The Model class extends the functionality of simulator.  It functions as a wrapper of a simulator.  

The responses could be obtained independent of the simulator.  Obviously, Simulator should be one of its 

members.  The Model class can send data to the simulator and retrieve the responses from it.  Also it can 

obtain the Jacobian of the model responses with respect to the physical parameter which is essential for 

the space mapping optimization.  SurrogateModel is derived from the Model class.  It is a linear convex 

combination of two different models.  This model is used by the novel surrogate model space mapping 

algorithm in SMX_Engine.  The Model class is shown in Fig. 4.  

V. SUPPORT CLASSES 

Many support classes are created and included in the SMX system.  One of the most important 

classes is the matrix class.  The optimization procedure involves a lot of matrix computations.  The matrix 

class has the capability of Broyden update and Singular Value Decomposition etc.  Data package classes 

are constructed to transfer data between modules.  The data packages capsulate the related data.  This 

cleans up the usually tedious and vague arguments of the algorithm function.  These packages can be 

easily inserted into arrays to transfer a large amount of data.   
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The graphic representation of the optimization results is a necessity for engineering CAD.  A 

plotter class is designed to show the curves.  Curves can be added into the plotter object one by one.  The 

plotter will fit them into a window by automatically adjusting the scale between ticks.  Constraints can 

also be plotted. 

VI. EXAMPLE 

A two-section 10:1 capacitively-loaded impedance transformer [7] is implemented in 

OSA90/hopeTM [8] as an example of SMX system.  Two models are provided.  One is considered as a fine 

model, the other is taken as coarse model.   

The “fine model” is a two-section transmission line with shunt capacitors.  The “coarse model” is 

the same transmission line without the shunt capacitors.  The design specifications are 

S11 0.50  for  0.5 GHz   1.5 GHz 

The designable parameters are the electrical lengths of the two transmission lines at  =1.0 GHz.  

The characteristic impedances are kept fixed at their optimal values.  Both the coarse and fine models 

make use of the ideal transmission line model of OSA90/hope.  Eleven frequency points are simulated per 

sweep.   

The setup procedure is a step-by-step wizard style.  It guides user to input the parameters and 

constrains.  The coarse model response S11 is calculated at the start point.  The optimal S11 responses of 

coarse model are obtained.  Using the optimal coarse model solution as the initial point for the fine 

model, the corresponding fine model responses is shown in Fig. 5.  The surrogate model is then 

optimized.  Finally, the final fine model responses are shown in Fig. 6. 

VII. CONCLUSIONS 

The SMX system design is described.  State-of-the-art optimization technology is utilized in the 

design process.  Object-oriented methodology is used to construct the system.  This makes the system 

easy to understand and highly extendable.  New optimization methods and new simulators can be plugged 
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in easily.  The SMX design methodology makes it suitable for engineering optimization and algorithm 

research.   
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Fig. 1. Illustration of the data flow in the SMX system.  The arrows represent the flow of data from 

module to module.    

 

 

GetNorm

FDF

GetError

SetConstraintMatrix

...

Optimizer

GetNorm

SetHuberThreshold

...

Huber

GetNorm

...

MinMax

 

Fig. 2. Illustration of the derivation of basic optimizer class.  The basic optimizer class includes basic 

functionality for gerneralized optimization.  These functionality includes obtaining norm and 

calculating error in the iteration.  Huber and minimax are two derived classes.  They have their 

own norm calculation function and other parameter setups. 

 



 8 

WriteInputFile

Simulate

GetResponses

...

OSA90

WriteInputFile

Simulate

GetResponses

...

OtherSimulator

WriteInputFile

Simulate

GetResponses

...

em

WriteInputFile

Simulate

GetResponses

...

Simulator

 
Fig. 3. Illustration of the derivation of simulator classes. The base simulator class is designed for disk 

file data exchange.  When derived to other simulaters, the procedure is the same.  But the data 

exchange method may be different.   
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Fig. 4. Illustration of the model class.  The model class functions as a wrapper of the Simulator class.  

It is independent of the simulator and expands its functionality.  SurrogateModel is a special 

model which is special for the surrogate model space mapping technology. 
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Fig. 5. The initial fine model response of the two-section impedance transformer.  The responses are 

obtained at the optimal point of the coarse model. 

 

 

 

Fig. 6. The optimized fine model response of the two-section impedance transformer coarse model 

after optimizing the surrogate model using SMX. 


