
SMX—A Novel Object-Oriented Optimization System
M.H. Bakr, J.W. Bandler, Q.S. Cheng, M.A. Ismail and J.E. Rayas-Sánchez

McMaster University, Hamilton, ON, Canada L8S 4K1, www.sos.mcmaster.ca

Abstract — The novel, object-oriented SMX optimization

system implements the powerful Surrogate Model-based
Space Mapping (SMSM) algorithm, which is automated for
the first time. SMX is capable of driving commercially
available EM, circuit and user-supplied simulators. The
SMX architecture permits easy integration of new simulators
and optimization tools. The power of SMX is illustrated
through an optimization example exploiting Momentum.

I. INTRODUCTION

Space Mapping (SM) aims at efficient engineering
optimization [1]. It establishes a mapping between the
parameter spaces of a “fine” model, e.g., an electro-
magnetic (EM) simulator, and a coarse model. Aggressive
Space Mapping efficiently directs the optimization steps.

In the recent SMSM approach [2], a surrogate [3] of the
fine model is iteratively used to solve the original design
problem. This surrogate model is a convex combination
of a mapped coarse model and a linearized fine model. It
can exploit a frequency-sensitive mapping.

The state of the art SMX engine implements the SMSM
algorithm. Object-Oriented Design (OOD) abstracts the
basic behavior of the models and optimizers modules. A
universal parameter setting and results retrieval method is
utilized for all simulators and optimizers. The SMX
architecture integrates these modules.

Another advantage of OOD is reusability and extenda-
bility. SMX can support a number of EM and circuit
simulators. Here, the basic functionality of simulators and
optimizers is abstracted in the two basic classes Simulator
and Optimizer. Many commercial simulators and
optimizers can be derived from these classes.

The SMX system is described in the Unified Modeling
Language (UML) [4]. Using this language, a complicated
system can be decomposed into relatively independent

This work was supported in part by the Natural Sciences and
Engineering Research Council of Canada under Grants
OGP0007239 and STP0201832, and through the Micronet
Network of Centres of Excellence. J.E. Rayas-Sánchez is funded
by CONACYT (Consejo Nacional de Ciencia y Tecnología,
Mexico), as well as by ITESO (Instituto Tecnológico y de
Estudios Superiores de Occidente, Mexico).

J.W. Bandler is also with Bandler Corporation, P.O. Box
8083, Dundas, Ontario, Canada L9H 5E7.

small objects without losing readability and intuitiveness.
The structure of each object can be represented in UML.

SMX takes full advantage of the multi-thread capability
of the Microsoft Windows operating system [5]. The
user-friendly interface responds smoothly while the SMX
core is running in a different thread in the background.
Synchronization and communication between threads are
properly arranged. SMX is capable of optimizing while
showing intermediate results and interacting with the user.

II. THE SMSM ALGORITHM

We denote the fine model responses at a point
1n

f
×∈ℜx and frequency ω by 1(,) rN

f f ω ×∈ℜR x .
These responses may include the real and imaginary parts
of S11, etc. The vector 1() m

f f
×∈ℜR x denotes the

responses at all the Nω simulation frequencies where
m=NrNω. The vector xc

1n×∈ ℜ and Rc(xc) 1m×∈ℜ denote a
coarse model point and the corresponding coarse model
responses, respectively. The coarse model responses at a
frequency ω c are similarly denoted by Rc(xc,ωc) 1rN ×∈ℜ .

The fine model is optimized indirectly by using a
surrogate [3] in the form of a convex combination of a
mapped coarse model (MCM) and a linearized fine model
(LFM). We denote the surrogate model in the ith iteration
by ()i

sR (()i
fx) 1m×∈ℜ . The ith iteration solves

()

()() ()()arg min (())
i

ii ii
s fU= +h x hR

h
, δ)()(ii ≤h (1)

where U(()i
sR (()i

fx + ()ih)) is the value of the objective
function evaluated using the surrogate model at ()i

fx + ()ih .
The surrogate model is given by

)∆)()(1()()()()()()()()(xJxRxRxR f
i

f
i
ff

i
f

i
m

i
f

i
s λλ +−+= ,

 ()i
f f f∆ = −x x x , []10,)(λ i ∈ , (2)

()i m n
f

×∈ℜJ is an approximation to the Jacobian of fine
model responses at ()i

fx . The LFM part in (2) ensures that
the algorithm will work if the coarse model is poor or even
wrong.

The MCM ()()i
m fxR utilizes

 () (,) (,)i
fm f j f jω ω≈R x xR (3)

 ()()() (,) ((,), (,))iii
f fm f j c j jPωω ω ω= x xR x R P (4)

a linear frequency mapping, where j=1, 2, …, Nω,

() ()()()

() () () ()

(,) ∆

(,)

i iiijf f
i i T i ijjfPω

ω
ωω σ γ

= +

x xP csB
x t

 (5)

The parameters () n ni ×∈ℜB , () 1i n×∈ℜs , () 1i n×∈ℜt ,
(i) 1n×∈ ℜc , () 1 1iσ ×∈ℜ and γ(i) 1 1×∈ℜ are the mapping

parameters. ω j is the jth simulation frequency, j=1, 2, …,
Nω. Thus, a fine model point fx and frequency ω j
correspond to a coarse model point ()(,)i

jf ωxP and
coarse model frequency ()(,)i

f jPω ωx .
The MCM should approximate the fine model over a

region of fine model parameters and frequency. The
mapping parameters are obtained through the optimization

() () () () () ()

1 2, , , , ,

[, , , ,],

arg min [...]
p

i i i i i i

T T T T
Nσ γ

σ γ =

s t cB

s t cB

e e e
 (6)

 () ()() ()k k
k m f f f= −e R x R x ∀ V ik

f
)()(∈x (7)

where V i)(is a set of fine model points of cardinality
NV p

i =||)(. V i)(is mainly constructed from previously
simulated fine model points as discussed in detail in [2].

III. SMX ARCHITECTURE

SMX automates the algorithm and drives EM/circuit
simulators. Object-oriented design is employed to
decompose the algorithm into independent modules
(objects). Here the module or object is an instance of a
certain class. Each module can carry out certain
functionality. It includes data structures describing the
properties of the object. Using the encapsulation concept,
the SMX system is decomposed into 6 modules, as shown
in Fig. 1.

The user interface and SMX engine run in two separate
threads concurrently. The user chooses the simulators and
setup problem specifications through a user interface. The
interface initiates the starting point (0)

cx , the constraints
and the control signals for the coarse and fine models.
The SMX engine performs optimization and returns the
progress, the current status, responses fR and cR etc., to
the user interface. The user interface feeds back the
optimization status such as objective function, designable
parameters and critical mapping parameters as ()iB , ()is ,

()it , ()iσ , ()ic and ()iγ in graphical and numerical format
to the user. The engine can optimize a model using either

classical optimization methods such as gradient-based
minimax or the state-of-the-art SMSM algorithm [2].

SMX user
interface

SMX engine

model optimizer

simulator

file system

Fig. 1. The modules of SMX.

IV. ALGORITHM CORE: SMX ENGINE

The SMX engine is abstracted as the SMX_Engine class.
After setup, the coarse model is optimized by the member
function OptimizeCoarseModel from the starting point (0)

cx .
This function uses m_pCoarseModelOptimizer, a pointer to a
minimax optimizer object to obtain *

cx . Then the member
function OptimizeSurrogate is called to optimize the
surrogate model)()(

f
i

s xR starting from the optimized
coarse model. The Huber optimizer is used for parameter
extraction (6) in OptimizeSurrogate. To carry out space
mapping, three base classes, Optimizer, Simulator and Model,
are abstracted and built.

The Optimizer base class is an abstract class. It provides
the interface for standard optimization routines. With
override of optimization routines, additional parameter
setup and objective function, the Huber, Minimax or other
optimization classes can be derived from Optimizer. Some
of the important functions in Optimizer are GetNorm,
GetErrors, FDF and SetConstraintMatrix. Different optimizers
use different norms as their objective functions. The
purely virtual function GetNorm is overridden to obtain the
appropriate norm. FDF gets the error values and their
derivatives by perturbation. It calls GetErrors to evaluate
the error ke used for (7), as well as for minimax design
optimization. SetConstrantMatrix sets constraints in matrix
form. The inheritance relation of Optimizer is shown in Fig.
2.

GetNorm
FDF

GetError
SetConstraintMatrix

...

Optimizer

GetNorm
SetHuberThreshold

...

Huber

GetNorm
...

MinMax

Fig. 2. Illustration of the derivation of basic optimizer class.

Similar to Optimizer, the Simulator class is a parent class

for different simulators. Commercial simulators and user
defined simulators are derived classes. Interface functions
are overridden for each new derived simulator class.
Additional parameters may also be added. OSA90/hopeTM
[6] and Agilent MomentumTM [7] are commercial
simulators currently derived from the Simulator class.

The SMX_Engine utilizes SurrogateModel which is derived
from a base Model class. The Model class functions as a
wrapper of a simulator. The responses are obtained
independent of the simulator. Obviously, Simulator is one
of the Model members. The Model class sends data to the
simulator and retrieves responses from it. Since Optimizer
needs normalized parameters, scaling factors are added.

V. HTS FILTER EXAMPLE

We consider two cases of the HTS filter problem [8]. In
Case 1, the “coarse” and “fine” models are both empirical
models of OSA90/hope. The “coarse” model uses the
ideal open circuit for the open stubs while the “fine”
model uses empirical models. Design specifications are

 21

21

0.05 for 3.967GHz and 4.099GHz

0.95 for 4.008 GHz 4.058GHz

S

S

ω ω

ω

≤ ≤ ≥

≥ ≤ ≤

The designable parameters are the lengths L1, L2 and L3
of the coupled lines and their separation S1, S2 and S3.

Here, we use decoupled frequency and space mapping,
that is == ts)()(ii 0 in (5). The rest of the mapping
parameters are obtained using (6)-(7). The SMX system
obtained the optimal solution in 4 iterations. The “fine”
model response in the first iteration is shown in Fig. 3
The “fine” model response at the final iteration is shown
in Fig. 4. Table I shows the initial and final parameters.
obtained by SMX optimization.

TABLE I

THE INITIAL AND FINAL DESIGNS OF THE FINE MODEL
(OSA90) FOR THE HTS FILTER

Parameter)1(
fx)4(

fx

L1 187.50 185.55

L2 198.84 191.71
L3 187.91 185.82
S1 20.04 21.03
S2 98.08 99.44

S3 100.90 114.21

all values are in mils

Fig. 3. Case 1: The initial response for the “fine” model
(OSA90).

Fig. 4. Case 1: The optimal “fine” model (OSA90) response.

In Case 2 we use Momentum as the fine model, while
the coarse model is the same as in Case 1. SMX obtains
the solution in 4 iterations. Fig. 5 shows the fine model
responses at the fourth SMX iteration. Then the minimax
optimizer in Momentum is used to refine this solution. It
takes approximately 32 hours on an IBM Aptiva computer
with AMD-K7 650MHz CPU and 384MB RAM. We use
fine interpolation resolution (0.1mil for all parameters).
See Fig. 6.

TABLE II
THE INITIAL AND FINAL DESIGNS OF THE FINE MODEL

(AGILENT MOMENTUM) FOR THE HTS FILTER

Para-
meter

)1(
fx)4(

fx Mom
fx

L1 187.50 193.28 194.87

L2 198.84 184.95 184.95
L3 187.91 193.03 194.39
S1 20.04 18.84 18.97
S2 98.08 82.72 79.60

S3 100.90 93.36 94.09

all values are in mils

VI. CONCLUSIONS

The SMX system design is formally presented for the
first time. State-of-the-art optimization technology is
utilized in the design process. Object-oriented program-
ming is used to construct the system. This makes the
system easy to understand and highly extendable. New
optimization methods and new simulators can be plugged
in. The SMX methodology makes it suitable for
engineering optimization and algorithm research.

ACKNOWLEDGEMENT

The authors thank K. Madsen and J. Søndergaard of
DTU, Denmark, for discussions and A.S. Mohamed for
his assistance. The authors thank Agilent Technologies,
Santa Rosa, CA, for making Momentum available.

REFERENCES

[1] J.W. Bandler, R.M. Biernacki, S.H. Chen, P.A. Grobelny and
R.H. Hemmers, “Space mapping technique for
electromagnetic optimization,” IEEE Trans. Microwave
Theory Tech., vol. 42, 1994, pp. 2536-2544.

[2] M.H. Bakr, J.W. Bandler, K. Madsen, J.E. Rayas-Sánchez
and J. Søndergaard, “Space mapping optimization of
microwave circuits exploiting surrogate models,” IEEE

MTT-S Int. Microwave Symp. Dig. (Boston, MA), 2000, pp.
1785-1788.

[3] A.J. Booker, J.E. Dennis, Jr., P.D. Frank, D. B. Serafini, V.
Torczon and M.W. Trosset, “A rigorous framework for
optimization of expensive functions by surrogates,”
Structural Optimization, vol. 17, 1999, pp. 1-13.

[4] UML Training in Object Oriented Analysis and Design page
at http://www.cragsystems.co.uk/uml_training_080.htm.

[5] C. Petzold, Programming Windows, Microsoft Press 1990.
[6] OSA90/hopeTM Version 4.0, formerly Optimization Systems

Associates Inc., P.O. Box 8083, Dundas, Ontario, Canada
L9H 5E7, now Agilent Technologies, 1400 Fountaingrove
Parkway, Santa Rosa, CA 95403-1799.

[7] Advanced Design System Release 1.3, Agilent EEsof EDA,
November 1999.

[8] J.W. Bandler, R.M. Biernacki, S.H. Chen, W.J. Gestinger,
P.A. Grobelny, C. Moskowitz and S.H. Talisa,
“Electromagnetic design of high-temperature super-
conducting filters,” Int. J. Microwave and Millimeter-Wave
Computer-Aided Engineering, vol. 5, 1995, pp. 331-343.

Fig. 5. Case 2: The SMX optimized fine model (Agilent
Momentum) response.

Fig. 6. Case 2: The final Momentum optimized fine model
response with a fine interpolation step of 0.1mil.

http://www.cragsystems.co.uk/uml_training_080.htm

	SMX—A Novel Object-Oriented Optimization System
	
	M.H. Bakr, J.W. Bandler, Q.S. Cheng, M.A. Ismail and J.E. Rayas-Sánchez
	McMaster University, Hamilton, ON, Canada L8S 4K1, www.sos.mcmaster.ca

