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Abstract     —  The novel, object-oriented SMX optimization 

system implements the powerful Surrogate Model-based 
Space Mapping (SMSM) algorithm, which is automated for 
the first time.  SMX is capable of driving commercially 
available EM, circuit and user-supplied simulators.  The 
SMX architecture permits easy integration of new simulators 
and optimization tools.  The power of SMX is illustrated 
through an optimization example exploiting Momentum. 

I. INTRODUCTION 

Space Mapping (SM) aims at efficient engineering 
optimization [1].  It establishes a mapping between the 
parameter spaces of a “fine” model, e.g., an electro-
magnetic (EM) simulator, and a coarse model.  Aggressive 
Space Mapping efficiently directs the optimization steps. 

In the recent SMSM approach [2], a surrogate [3] of the 
fine model is iteratively used to solve the original design 
problem.  This surrogate model is a convex combination 
of a mapped coarse model and a linearized fine model.  It 
can exploit a frequency-sensitive mapping. 

The state of the art SMX engine implements the SMSM 
algorithm.  Object-Oriented Design (OOD) abstracts the 
basic behavior of the models and optimizers modules.  A 
universal parameter setting and results retrieval method is 
utilized for all simulators and optimizers.  The SMX 
architecture integrates these modules. 

Another advantage of OOD is reusability and extenda-
bility.  SMX can support a number of EM and circuit 
simulators.  Here, the basic functionality of simulators and 
optimizers is abstracted in the two basic classes Simulator 
and Optimizer.  Many commercial simulators and 
optimizers can be derived from these classes. 

The SMX system is described in the Unified Modeling 
Language (UML) [4].  Using this language, a complicated 
system can be decomposed into relatively independent 
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small objects without losing readability and intuitiveness.  
The structure of each object can be represented in UML. 

SMX takes full advantage of the multi-thread capability 
of the Microsoft Windows operating system [5].  The 
user-friendly interface responds smoothly while the SMX 
core is running in a different thread in the background.  
Synchronization and communication between threads are 
properly arranged.  SMX is capable of optimizing while 
showing intermediate results and interacting with the user. 

II. THE SMSM ALGORITHM 

We denote the fine model responses at a point 
1n

f
×∈ℜx  and frequency ω  by 1( , ) rN

f f ω ×∈ℜR x .  
These responses may include the real and imaginary parts 
of S11, etc.  The vector 1( ) m

f f
×∈ℜR x  denotes the 

responses at all the Nω simulation frequencies where 
m=NrNω.  The vector xc

1n×∈ ℜ  and Rc(xc) 1m×∈ℜ  denote a 
coarse model point and the corresponding coarse model 
responses, respectively.  The coarse model responses at a 
frequency ω c  are similarly denoted by Rc(xc,ωc) 1rN ×∈ℜ . 

The fine model is optimized indirectly by using a 
surrogate [3] in the form of a convex combination of a 
mapped coarse model (MCM) and a linearized fine model 
(LFM).  We denote the surrogate model in the ith iteration 
by ( )i

sR ( ( )i
fx ) 1m×∈ℜ .  The ith iteration solves 
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where U( ( )i
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fx + ( )ih )) is the value of the objective 
function evaluated using the surrogate model at ( )i

fx + ( )ih . 
The surrogate model is given by 
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( )i m n
f

×∈ℜJ  is an approximation to the Jacobian of fine 
model responses at ( )i

fx .  The LFM part in (2) ensures that 
the algorithm will work if the coarse model is poor or even 
wrong. 

The MCM ( )( )i
m fxR  utilizes 
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fm f j f jω ω≈R x xR  (3) 
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a linear frequency mapping, where j=1, 2, …, Nω,  
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The parameters ( ) n ni ×∈ℜB , ( ) 1i n×∈ℜs , ( ) 1i n×∈ℜt , 
(i) 1n×∈ ℜc , ( ) 1 1iσ ×∈ℜ  and γ(i) 1 1×∈ℜ  are the mapping 

parameters.  ω j  is the jth simulation frequency, j=1, 2, …, 
Nω.  Thus, a fine model point fx  and frequency ω j  
correspond to a coarse model point ( )( , )i

jf ωxP  and 
coarse model frequency ( )( , )i

f jPω ωx . 
The MCM should approximate the fine model over a 

region of fine model parameters and frequency.  The 
mapping parameters are obtained through the optimization 
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where V i)(  is a set of fine model points of cardinality 
NV p

i =|| )( .  V i)(  is mainly constructed from previously 
simulated fine model points as discussed in detail in [2]. 

III. SMX ARCHITECTURE 

SMX automates the algorithm and drives EM/circuit 
simulators.  Object-oriented design is employed to 
decompose the algorithm into independent modules 
(objects).  Here the module or object is an instance of a 
certain class.  Each module can carry out certain 
functionality.  It includes data structures describing the 
properties of the object.  Using the encapsulation concept, 
the SMX system is decomposed into 6 modules, as shown 
in Fig. 1.  

The user interface and SMX engine run in two separate 
threads concurrently.  The user chooses the simulators and 
setup problem specifications through a user interface.  The 
interface initiates the starting point (0)

cx , the constraints 
and the control signals for the coarse and fine models.  
The SMX engine performs optimization and returns the 
progress, the current status, responses fR  and cR  etc., to 
the user interface.  The user interface feeds back the 
optimization status such as objective function, designable 
parameters and critical mapping parameters as ( )iB , ( )is , 

( )it , ( )iσ , ( )ic and ( )iγ in graphical and numerical format 
to the user.  The engine can optimize a model using either 

classical optimization methods such as gradient-based 
minimax or the state-of-the-art SMSM algorithm [2]. 
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Fig. 1. The modules of SMX. 

 

IV. ALGORITHM CORE: SMX ENGINE 

The SMX engine is abstracted as the SMX_Engine class.  
After setup, the coarse model is optimized by the member 
function OptimizeCoarseModel from the starting point (0)

cx .  
This function uses m_pCoarseModelOptimizer, a pointer to a 
minimax optimizer object to obtain *

cx .  Then the member 
function OptimizeSurrogate is called to optimize the 
surrogate model )()(

f
i

s xR  starting from the optimized 
coarse model.  The Huber optimizer is used for parameter 
extraction (6) in OptimizeSurrogate.  To carry out space 
mapping, three base classes, Optimizer, Simulator and Model, 
are abstracted and built. 

The Optimizer base class is an abstract class.  It provides 
the interface for standard optimization routines.  With 
override of optimization routines, additional parameter 
setup and objective function, the Huber, Minimax or other 
optimization classes can be derived from Optimizer.  Some 
of the important functions in Optimizer are GetNorm, 
GetErrors, FDF and SetConstraintMatrix.  Different optimizers 
use different norms as their objective functions.  The 
purely virtual function GetNorm is overridden to obtain the 
appropriate norm.  FDF gets the error values and their 
derivatives by perturbation.  It calls GetErrors to evaluate 
the error ke  used for (7), as well as for minimax design 
optimization.  SetConstrantMatrix sets constraints in matrix 
form.  The inheritance relation of Optimizer is shown in Fig. 
2. 
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Fig. 2. Illustration of the derivation of basic optimizer class. 

 
Similar to Optimizer, the Simulator class is a parent class 

for different simulators.  Commercial simulators and user 
defined simulators are derived classes.  Interface functions 
are overridden for each new derived simulator class.  
Additional parameters may also be added.  OSA90/hopeTM 
[6] and Agilent MomentumTM [7] are commercial 
simulators currently derived from the  Simulator class. 

The SMX_Engine utilizes SurrogateModel which is derived 
from a base Model class.  The Model class functions as a 
wrapper of a simulator.  The responses are obtained 
independent of the simulator.  Obviously, Simulator is one 
of the Model members.  The Model class sends data to the 
simulator and retrieves responses from it.  Since Optimizer 
needs normalized parameters, scaling factors are added. 

V. HTS FILTER EXAMPLE 

We consider two cases of the HTS filter problem [8].  In 
Case 1, the “coarse” and “fine” models are both empirical 
models of OSA90/hope.  The “coarse” model uses the 
ideal open circuit for the open stubs while the “fine” 
model uses empirical models.  Design specifications are 
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The designable parameters are the lengths L1, L2 and L3 
of the coupled lines and their separation S1, S2 and S3. 

Here, we use decoupled frequency and space mapping, 
that is == ts )()( ii 0 in (5).  The rest of the mapping 
parameters are obtained using (6)-(7).  The SMX system 
obtained the optimal solution in 4 iterations.  The “fine” 
model response in the first iteration is shown in Fig. 3  
The “fine” model response at the final iteration is shown 
in Fig. 4.  Table I shows the initial and final parameters. 
obtained by SMX optimization. 

 
TABLE I 

THE INITIAL AND FINAL DESIGNS OF THE FINE MODEL 
(OSA90) FOR THE HTS FILTER 

Parameter )1(
fx  )4(

fx  

L1 187.50 185.55 

L2 198.84 191.71 
L3 187.91 185.82 
S1 20.04 21.03 
S2 98.08 99.44 

S3 100.90 114.21 

all values are in mils 
 

Fig. 3. Case 1: The initial response for the “fine” model
(OSA90). 
 

Fig. 4. Case 1: The optimal “fine” model (OSA90) response. 



In Case 2 we use Momentum as the fine model, while 
the coarse model is the same as in Case 1. SMX obtains 
the solution in 4 iterations.  Fig. 5 shows the fine model 
responses at the fourth SMX iteration.  Then the minimax 
optimizer in Momentum is used to refine this solution.  It 
takes approximately 32 hours on an IBM Aptiva computer 
with AMD-K7 650MHz CPU and 384MB RAM.  We use 
fine interpolation resolution (0.1mil for all parameters).  
See Fig. 6. 
 

TABLE II 
THE INITIAL AND FINAL DESIGNS OF THE FINE MODEL 

(AGILENT MOMENTUM) FOR THE HTS FILTER 

Para-
meter 

)1(
fx  )4(

fx  Mom
fx  

L1 187.50 193.28 194.87 

L2 198.84 184.95 184.95 
L3 187.91 193.03 194.39 
S1 20.04 18.84 18.97 
S2 98.08 82.72 79.60 

S3 100.90 93.36 94.09 

all values are in mils 

VI. CONCLUSIONS 

The SMX system design is formally presented for the 
first time.  State-of-the-art optimization technology is 
utilized in the design process.  Object-oriented program-
ming is used to construct the system.  This makes the 
system easy to understand and highly extendable.  New 
optimization methods and new simulators can be plugged 
in.  The SMX methodology makes it suitable for 
engineering optimization and algorithm research. 
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Fig. 5. Case 2: The SMX optimized fine model (Agilent
Momentum) response. 
 

 

Fig. 6. Case 2: The final Momentum optimized fine model
response with a fine interpolation step of 0.1mil. 

http://www.cragsystems.co.uk/uml_training_080.htm

	SMX—A Novel Object-Oriented Optimization System
	
	M.H. Bakr, J.W. Bandler, Q.S. Cheng, M.A. Ismail and J.E. Rayas-Sánchez
	McMaster University, Hamilton, ON, Canada L8S 4K1, www.sos.mcmaster.ca



