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Artificial Neural Networks (ANN) in Microwave Design

ANNs are suitable models for microwave circuit optimization and statistical design (Zaabab, 

Zhang and Nakhla, 1995, Gupta et al., 1996, Burrascano and Mongiardo, 1998, 1999)

once they are trained, the neuromodels can be used for optimization within the region of 

training

the principal drawback of this ANN optimization approach is the cost of generating 

sufficient learning samples

the extrapolation ability of neuromodels is very poor, making unreliable any solution 

predicted outside the training region

introducing knowledge can alleviate these limitations (Gupta et al., 1999)
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Conventional ANN Optimization Approach

step 1
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Conventional ANN Optimization Approach

step 1 step 2
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Conventional ANN Optimization Approach

step 1 step 2

many fine model simulations are usually needed

solutions predicted outside the training region are unreliable 
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Neural Space Mapping (NSM) Optimization

exploits the SM-based neuromodeling techniques 

(Bandler et al., 1999)

coarse models are used as sources of knowledge that reduce the amount of learning data and 

improve the generalization and extrapolation performance

NSM requires a reduced set of upfront learning base points

the initial learning base points are selected through sensitivity analysis using the coarse 

model

neuromappings are developed iteratively: their generalization performance is controlled by 

gradually increasing their complexity starting with a 3-layer perceptron with 0 hidden 

neurons
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Neural Space Mapping (NSM) Optimization Concept

step 1
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Neural Space Mapping (NSM) Optimization Concept

step 1 step 2

(2n + 1 learning base points for a 

microwave circuit with n design 

parameters)

Simulation Optimization Systems Research Laboratory
McMaster University

x
f 1

x
f 2

x
f 3

x
c
*

w R
c
 »  R*

coarse

modelx
c

x
c
*



Neural Space Mapping (NSM) Optimization Concept (continued)

step 3
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Neural Space Mapping (NSM) Optimization Concept (continued)

step 3 step 4
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Neuromappings

Space Mapped neuromapping Frequency-Dependent Space

Mapped neuromapping                   
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Neuromappings (continued)

Frequency Mapped neuromapping Frequency Space

Mapped neuromapping                   
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Neuromappings (continued)

Frequency Partial-Space 

Mapped neuromapping
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Neural Space Mapping (NSM) Optimization Algorithm
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the problem of circuit design using the coarse model is formulated as

where U is a suitable objective function

Coarse Optimization Phase
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P(i) is the input-output relationship of the ANN at the ith iteration

w contains the free parameters of the current ANN

2n+i is the number of training base points and Fp is the number of frequency points

Training the SM-Based Neuromodel During NSM Optimization
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we use an SM-based neuromodel as an improved coarse model

the next iterate is obtained by solving

if an SMN is used to implement P(i)

SM-Based Neuromodel Optimization
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HTS Quarter-Wave Parallel Coupled-Line Microstrip Filter

(Westinghouse, 1993)

we take L0 = 50 mil, H = 20 mil, 

W = 7 mil, r = 23.425, loss 

tangent = 310−5; the 

metalization is considered 

lossless 

the design parameters are 

xf = [L1 L2 L3 S1 S2 S3] 
T
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NSM Optimization of the HTS Microstrip Filter

specifications

|S21|  0.95 for 4.008 GHz  f  4.058 GHz

|S21|  0.05 for f  3.967 GHz and f  4.099 GHz 

“fine” model: Sonnet’s em with high resolution grid 

“coarse” model: OSA90/hope built-in models of open circuits, microstrip lines and 

coupled microstrip lines
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NSM Optimization of the HTS Filter (continued)

coarse and fine model responses at the optimal coarse solution 

OSA90/hope (−) and em (·)
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NSM Optimization of the HTS Filter (continued)

the initial 2n+1 points are chosen by performing sensitivity analysis on the coarse model: a 

3% deviation from xc
* for L1, L2, and L3 is used, while a 20% is used for S1, S2, and S3

coarse and fine model responses at base points 

OSA90/hope em
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NSM Optimization of the HTS Filter (continued)

learning errors at base points 

before any neuromapping mapping w , L1 and S1 with a 3LP:-7-5-3
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NSM Optimization of the HTS Filter (continued)

fine model response (·) at the next point predicted by the first NSM iteration and optimal 

coarse response (−)

(3LP:7-5-3,w, L1, S1)
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Bandstop Microstrip Filter with Quarter-Wave Open Stubs

we take H = 25 mil, W0 = 25 

mil, r = 9.4 (alumina)

the design parameters are 

xf = [W1 W2 L0 L1 L2] 
T
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NSM Optimization of the Bandstop Filter

specifications

|S21|  0.05 for 9.3 GHz  f  10.7 GHz

|S21|  0.9 for f  8 GHz and f  12 GHz 

“fine” model: Sonnet’s em with high resolution grid 

“coarse” model: transmission line sections and empirical formulas
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NSM Optimization of the Bandstop Filter (continued)

coarse and fine model responses at the optimal coarse solution 

coarse model (−) and em (·)

the initial 2n+1 points are chosen by performing sensitivity analysis on the coarse model: a 

50% deviation from xc
* for W1, W2, and L0 is used, while a 15% is used for L1, and L2
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NSM Optimization of the Bandstop Filter (continued)

fine model response (·) at the next point predicted by the second NSM iteration and optimal 

coarse response (−)

(3LP:6-3-2,w,W2)
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Conclusions

we describe an innovative algorithm for EM optimization based on Space Mapping 

technology and Artificial Neural Networks

Neural Space Mapping (NSM) optimization exploits our SM-based neuromodeling 

techniques

an initial mapping is established by performing upfront fine model analysis at a reduced 

number of base points

coarse model sensitivity is exploited to select those base points

the complexity of the SM-based neuromodels is gradually increased, starting with a 3-layer 

perceptron with 0 hidden neurons

the optimization of the current SM-based neuromodel predicts the next iterate
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