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Space Mapping Concept

(Bandler et al., 1994-)
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Generalized Space Mapping (GSM)

(Bandler et al., 2001)

GSM is a comprehensive framework to engineering device modeling

GSM exploits the Space Mapping (SM), 

the Frequency Space Mapping (FSM) (Bandler et al., 1994) and

the Multiple Space Mapping (MSM) (Bandler et al., 1998) concepts

to build a new engineering device modeling framework

two cases are considered: 

the basic Space Mapping Super Model (SMSM) concept and

the basic Frequency-Space Mapping Super Model (FSMSM) concept
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Space Mapping Super Model (SMSM)
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Frequency-Space Mapping Super Model (FSMSM)
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Multiple Space Mapping (MSM) Concept

MSM for Device Responses (MSMDR)
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Multiple Space Mapping (MSM) Concept

MSM for Frequency Intervals (MSMFI)
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MSMFI Algorithm

Step 1 Initialize i=1 and let the frequency interval 

Step 2 Establish a mapping Pi in the frequency range defined by 

Step 3 Assign the mapping Pi  to the frequency interval

in which the error criteria is satisfied

Step 4 Replace  by                and increment i

Step 5 If  is not empty go to step 2, otherwise stop
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Mathematical Formulation for GSM

the kth mapping is given by

in matrix form, assuming a linear mapping

the mapping parameters                                         can be evaluated 

by solving the optimization problem

where m is the number of base points selected in the fine model 

space and      is an error vector given by
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Mathematical Formulation for GSM (continued)

we impose constraints on the mapping parameters such that they are 

as close as possible to those corresponding to a unit mapping

the objective function is modified as  

where
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Selection of the Base Points

the selection of the base points in the region of interest follows

the star distribution (Bandler et al., 1989)

according to this distribution the number of base points for

a circuit with n design parameters is

m = 2n + 1
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An Implementation of SMSM and FSMSM

select m base points                                  in the region of interest (star distribution)

for SMSM apply direct optimization to solve

explicitly setting

for FSMSM apply direct optimization to solve 
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Comparison between SMSM and FSMSM

Microstrip Transmission Line
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the region of interest

10 mil  W  30 mil

40 mil  L  60 mil 

10 mil  H  20 mil

8  er   10

the frequency range is 20 GHz to 30 GHz 

the number of base points is 9 and

the number of test points is 50



Microstrip Transmission Line

SMSM and FSMSM mapping parameters for

the microstrip transmission line
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Microstrip Transmission Line

the error in S21 at the test points
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Microstrip Right Angle Bend

Simulation Optimization Systems Research Laboratory
McMaster University

H

e
r

W

W

the fine model is analyzed by Sonnet’s em

the “coarse” model is a Jansen empirical 

model (Jansen et al., 1983)

the region of interest

20 mil  W  30 mil

8 mil  H  16 mil

8  er  10

the frequency range is 1 GHz to 41 GHz 

the number of base points is 7 and

the number of test points is 50



Microstrip Right Angle Bend
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the error in S11 at the test points the error in S11 at the test points 

applying FSMSM
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Microstrip Right Angle Bend
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the error in S21 at the test points the error in S21 at the test points 

applying FSMSM
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Microstrip Step Junction
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the region of interest

20 mil  W1  40 mil

10 mil  W2  20 mil 

10 mil  H  20 mil

8  er   10

the frequency range is 2 GHz to 40 GHz 

the number of base points is 9 and

the number of test points is 50



Microstrip Step Junction

MSM for Device Responses (MSMDR) is developed to enhance
the coarse model of the microstrip step junction
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Microstrip Step Junction
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Microstrip Step Junction
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the error in S21 at the test points the error in S21 at the test points after 

applying (MSMDR)
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Microstrip Shaped T-Junction

the fine and coarse models
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Microstrip Shaped T-Junction

the region of interest

15 mil  H  25 mil

2 mil  X  10 mil

15 mil  Y  25 mil

8   10

the frequency range is 2 GHz to 20 GHz with a step of 2 GHz

the number of base points is 9, the number of test points is 50

the widths W of the input lines track H so that their 

characteristic impedance is 50 ohm

W1 = W/3

W2 is suitably constrained

rε
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Microstrip Shaped T-Junction

MSMFI is developed to enhance the accuracy of the coarse model

our algorithm determined two intervals: 2-16 GHz and 16-20 GHz
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Microstrip Shaped T-Junction

the responses at two test points in the region of interest by Sonnet’s em (•):

the coarse model (---), the enhanced coarse model (—)
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Microstrip Shaped T-Junction

the errors of the coarse model responses at the test points
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Microstrip Shaped T-Junction

the errors of the enhanced coarse model responses at the test points
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Microstrip Shaped T-Junction Optimization

the enhanced coarse model is utilized

the optimization variables are X and Y

W = 24 mil, H = 25 mil and              

specifications

in the frequency range 2 GHz to 20 GHz

OSA90/hope minimax optimization reached 

X = 4.31 mil and Y = 19.77 mil

9.9=rε

3/1,3/1 2211  SS
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Microstrip Shaped T-Junction Optimization

optimum responses by Sonnet’s em (•):

the coarse model (---), the enhanced coarse model (—)
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Conclusions

we introduce a comprehensive framework called

Generalized Space mapping (GSM) to engineering device modeling

in GSM we utilize a few relevant full-wave EM simulations to match

the responses of the fine and coarse model over a designable

region of parameters and frequency

GSM generalizes the Space Mapping (SM), the Frequency Space Mapping (FSM)

and the Multiple Space Mapping (MSM) concepts to build

a new engineering device modeling framework

two fundamental concepts are presented: Space Mapping Super Model (SMSM) and  

Frequency-Space Mapping Super Model (FSMSM)

MSM can be combined with SMSM and FSMSM to provide a powerful and reliable 

modeling tool for microwave devices
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