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Abstract     —  For the first time, we present Neural Inverse 

Space Mapping (NISM) optimization for EM-based design of 
microwave structures.  The inverse of the mapping from the 
fine to the coarse model parameter spaces is exploited for the 
first time in a Space Mapping algorithm.  NISM optimization 
does not require: up-front EM simulations, multipoint 
parameter extraction or frequency mapping. The inverse of 
the mapping is approximated by a neural network whose 
generalization performance is controlled through a network 
growing strategy.  We contrast our new algorithm with 
Neural Space Mapping (NSM) optimization. 

I. INTRODUCTION 

An elegant new algorithm for EM-based design of 
microwave circuits is presented for the first time: Neural 
Inverse Space Mapping (NISM) optimization.  This is the 
first Space Mapping (SM) algorithm that explicitly makes 
use of the inverse of the mapping from the fine to the 
coarse model parameter spaces. 

NISM follows an aggressive formulation by not 
requiring a number of up-front fine model evaluations to 
start building the mapping.  An innovative yet simple 
procedure for parameter extraction avoids the need of 
multipoint matching and frequency mappings.  A neural 
network whose generalization performance is controlled 
through a network growing strategy approximates the 
inverse of the mapping at each iteration.  NISM step 
simply evaluates the current neural network at the optimal 
coarse solution.  This step is equivalent to a quasi-Newton 
step while the inverse mapping remains essentially linear. 

We compare our new algorithm with Neural Space 
Mapping (NSM) optimization [1-2] by solving the same 
microwave design problem: an HTS microstrip filter. 

 
This work was supported in part by the Natural Sciences and 

Engineering Research Council of Canada under Grants 
OGP0007239 and STR234854-00, through the Micronet 
Network of Centres of Excellence and Bandler Corporation.  
M.A. Ismail is supported by a Nortel Networks Ontario Graduate 
Scholarship in Science and Technology.  J.E. Rayas-Sánchez is 
funded by CONACYT (Consejo Nacional de Ciencia y 
Tecnología, Mexico), as well as by ITESO (Instituto 
Tecnológico y de Estudios Superiores de Occidente, Mexico). 

J.W. Bandler is also with Bandler Corporation, P.O. Box 
8083, Dundas, Ontario, Canada L9H 5E7. 

Q.J. Zhang is with the Department of Electronics, Carleton 
University, 1125 Colonel By Drive, Ottawa, Canada K1S 5B6. 

II. NEURAL INVERSE SPACE MAPPING (NISM) 

A. Notation 

Let the vectors xc and xf represent the design parameters 
of the coarse and fine models, respectively (xc, xf ∈ ℜn).  
We denote the optimizable fine model responses at point 
xf and frequency ω by Rf (xf, ω) ∈ ℜr where r is the num-
ber of responses to be optimized.  The vector Rf (xf) ∈ ℜm 
denotes the fine model responses at the Fp simulation 
frequencies, where m = rFp.  Similarly, Rc (xc) ∈ ℜm deno-
tes the corresponding coarse model responses to be 
optimized. 

Additionally, we denote the characterizing fine model 
responses at point xf ∈ ℜn and frequency ω by Rfs(xf, ω) ∈ 
ℜR, which includes the real and imaginary parts of all the 
available characterizing responses in the model 
(considering symmetry).  For example, for a 2-port 
reciprocal network they include Re{S11}, Im{S11}, Re{S21} 
and Im{S21}, and R = 4.  The vector Rfs(xf) ∈ ℜM denotes 
the characterizing responses at all the Fp frequency points, 
where M = RFp.  Similarly, Rcs(xc) ∈ ℜM denotes the 
corresponding characterizing coarse model responses. 

B. Flow Diagram: An Overview 

Fig. 1 shows a flow diagram for NISM optimization.  
We start by performing regular minimax optimization on 
the coarse model to find the optimal coarse solution xc

* 
that yields the desired response.  The characterizing fine 
model responses Rfs at the optimal coarse solution xc

* are 
then calculated. 

We realize parameter extraction, which consists of 
finding the coarse model parameters that makes the 
characterizing coarse responses Rcs as close as possible to 
the previously calculated Rfs.   

We continue by training the simplest neural network N 
that implements the inverse of the mapping from the fine 
to the coarse parameter space at the available points. 

The new point in the fine model parameter space is then 
calculated by simply evaluating the neural network at the 
optimal coarse solution.  If the maximum relative change 
in the fine model parameters is smaller than a previously 
defined amount we finish, otherwise we calculate the 
characterizing fine model responses at the new point and 
continue with the algorithm. 



C. Parameter Extraction 

The parameter extraction procedure at the ith NISM 
iteration is formulated as the following optimization 
problem 
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We solve (1) using the Levenberg-Marquardt algorithm 
for nonlinear curve fitting available in the Matlab 
Optimization Toolbox [3]. 

We normally use xc
* as the starting point for solving (1).  

This might not be a good starting point when an extremely 
severe matching problem is being solved, one that has 
some poor local minimum around xc

*.  If the algorithm is 
trapped in a poor local minimum, we change the starting 
point for (1) by taking a small random perturbation ∆x 
around xc

* until we find an acceptable local minimum, i.e., 
until we obtain a good matching between models. 

 

Fig. 1. Flow diagram of Neural Inverse Space Mapping 
(NISM) optimization. 

The maximum perturbation ∆max is obtained from the 
maximum absolute sensitivity of the parameter extraction 
objective function at xc

* as follows 
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Let rand ∈ ℜn be a vector whose elements take random 
values between 0 and +1 every time it is evaluated.  The 
values of the elements of ∆x are calculated as 

)12(max −= kk randx ∆∆ ,   k = 1,… , n (3) 

A value of δPE = 0.03 is used in our implementation.  
Many other values of δPE could be used in (3), since we 
use it only to escape from a poor local minimum. 

A similar strategy for statistical parameter extraction 
was proposed in [4], where an exploration region is first 
created by predefining a fixed number of starting points 
around xc

*. 
The algorithm for realizing parameter extraction is 

stated as follows 

algorithm: Parameter Extraction 
begin 
         solve (1) using xc

* as starting point 
         while ||e(xc

(i))||∞ > εPE 
                  calculate ∆x using (2) and (3) 
                  solve (1) using xc

*+∆x as starting point 
end 

A value of εPE = 0.15 is used in our implementation, 
assuming that all the response values are normalized. 

D. Inverse Neuromapping 

When training the neural network N that implements the 
inverse mapping we solve the following optimization 
problem 
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where i is the current NISM iteration and vector w 
contains the internal parameters (weights, bias, etc.) of the 
neural network N.  The starting point w(0) for solving (4) is 
a unit mapping, i.e., N (xc

(l), w(0)) = xc
(l), for l = 1,…, i.  We 

use the Scaled Conjugate Gradient (SCG) algorithm 
available in the Matlab Neural Network Toolbox [5] for 
solving (4). 

To control the generalization performance of the neural 
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network N, we follow a network growing strategy [6], in 
which case we start with a small perceptron to match the 
initial points and then add more neurons only when we are 
unable to meet a small error. 

We initially assume a 2-layer perceptron given by 
o

c
o

fc bxWxwxN +==),(  (5) 

where W 
o ∈ ℜn×n is the matrix of output weighting factors, 

bo∈ ℜn is the vector of output bias elements, and vector w 
contains bo and the columns of W 

o.  The starting point is 
obtained by making W 

o = I and bo = 0. 
If a 2-layer perceptron is not sufficient to make the 

learning error UN(w*) small enough, then we use a 3-layer 
perceptron with h hidden neurons given by 
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where W 
o ∈ ℜn×h, bo∈ ℜn, ΦΦΦΦ(xc) ∈ ℜh is the vector of 

hidden signals, s ∈ ℜh is the vector of activation 
potentials, W 

h ∈ ℜh×n is the matrix of hidden weighting 
factors, bh∈ ℜh is the vector of hidden bias elements and h 
is the number of hidden neurons.  In this work we use 
hyperbolic tangents as nonlinear activation functions, i.e., 
ϕ(⋅) = tanh(⋅).  Vector w contains bo, bh, the columns of W 

o 
and the columns of W 

h. 
Our starting point for solving (4) using (6) is also a unit 

mapping, which is obtained by making bo = 0, bh = 0, W 
h = 

0.1[I 0]T and W 
o = 10[I 0], assuming that the training data 

has been scaled between −1 and +1.  Notice that we 
consider h ≥ n. 

The algorithm for finding the simplest inverse 
neuromapping is stated as follows 

algorithm: Inverse Neuromapping 
begin 

solve (4) using (5) 
h = n 
while UN(w*) > εL 

solve (4) using (6) 
h = h+1 

end 

In our implementation we use εL = 1×10−4.  Notice that 
the algorithm for finding the inverse neuromapping uses a 
2-layer perceptron during at least the first n+1 NISM 
iterations, since the points (xc

(i), xf
(i)) can be mapped with a 

linear mapping for i = 1 … n+1.  A 3-layer perceptron is 
needed only when we exceed n+1 NISM iterations and the 
mapping is significantly nonlinear. 

E. Nature of the NISM step 

We can prove that the NISM step, xf 
(i+1) = N(xc

*), is 
equivalent to a quasi-Newton step while the inverse 
mapping built during NISM optimization remains linear, 
i.e., while a 2-layer perceptron is enough to approximate 
the inverse mapping.  We can also prove that the NISM 
step gradually departs from a quasi-Newton step as the 
amount of nonlinearity needed in the inverse mapping 
increases.  Both proofs are omitted in this paper due to the 
limitations in space. 

III.  EXAMPLE 

We apply NISM optimization to a high-temperature su-
perconducting (HTS) quarter-wave parallel coupled-line 
microstrip filter, and contrast our results with those obtain-
ed by using NSM optimization on the same problem [1-2]. 

L1, L2 and L3 are the lengths of the parallel coupled-line 
sections and S1, S2 and S3 are the gaps between the sec-
tions.  The width W is the same for all the sections as well 
as for the input and output lines, of length L0.  A substrate 
with thickness H and dielectric constant εr is used. 

The design parameters are xf = [L1 L2 L3 S1 S2 S3] T.  The 
specifications as well as the values of L0, H, W, εr, loss 
tangent and metalization are taken as in [1-2]. 

Sonnet’s em [7] is employed as the fine model, using 
a high-resolution grid.  As the coarse model we use 
sections of OSA90/hope [8] built-in microstrip lines, 
two-coupled microstrip lines and open circuits connected 
by circuit theory over the same substrate. 

We use the same optimal coarse model solution xc
* as in 

[1-2].  The coarse and fine model responses at the optimal 
coarse solution are shown in Fig. 2. 

After only 3 fine model simulations the optimal NISM 
solution was found, as shown in Fig. 3. 
 

Fig. 2. Coarse model response (−) and fine model response 
(o) at xc

*. 
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Fig. 3. Coarse model response at xc
* (−) and fine model 

response at xf
NISM (o): (a) at all the frequencies of interest, (b) at 

the passband. 
 

Fig. 4 shows the results obtained using NSM 
optimization [2], where the optimal NSM solution was 
found after 14 fine model evaluations.   
 

Fig. 4. Coarse model response at xc
* (−) and fine mode 

response at xf
NSM (o) at the passband. 

 

It is seen that NISM optimization is not only more 
efficient in terms of the required fine model evaluations, 
but also yields a solution closer to the optimal solution of 
the original optimization problem (compare Figs. 3b and 
4).  We have arrived at similar conclusions in other 
microwave design problems where NISM and NSM were 
applied (2-section impedance transformer, band-stop 
microstrip filter with quarter-wave open stubs, etc.). 

IV. CONCLUSIONS 

We propose Neural Inverse Space Mapping (NISM) 
optimization for EM-based design of microwave 
structures.  The inverse of the mapping is exploited for the 
first time in a space mapping algorithm.  NISM 
optimization does not require: up-front EM simulations,  
multipoint parameter extraction nor frequency mapping. 
Our new algorithm exhibits superior performance than 
Neural Space Mapping (NSM) optimization. 
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