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EM Yield-driven Design via SM-based Neuromodels 
Accurate yield optimization and statistical analysis of 
microwave components are crucial in manufacturability-
driven designs in a time-to-market development 
environment.  Yield optimization requires intensive 
simulations to cover the entire statistic of possible outcomes 
of a given manufacturing process.  Performing direct yield 
optimization using accurate full wave electromagnetic (EM) 
simulations does not appear feasible.  Here, an efficient 
procedure to realize EM-based yield optimization and 
statistical analysis of microwave structures using space 
mapping-based neuromodels is proposed. 
We have mathematically formulated the yield optimization 
problem using SM-based neuromodels.  A general equation 
to express the relationship between the fine and coarse 
model sensitivities through a nonlinear, frequency-sensitive 
neuromapping has been found. 
We illustrate our technique by the yield analysis and 
optimization of an HTS filter.  Here we assume symmetric 
variations in the physical parameters due to tolerances.  
Efficient procedures have also been developed for the 
asymmetric case. 
Yield Optimization of an HTS Filter 
Consider a high-temperature superconducting (HTS) 
parallel coupled-line microstrip filter [1,2] (Fig. 1). 
L1, L2 and L3 are the lengths of the parallel coupled-line 
sections and S1, S2 and S3 are the gaps.  The width W is the 
same for all the sections as well as for the input and output 
lines, of length L0.  A lanthanum aluminate substrate with 
thickness H and dielectric constant εr is used. 
The design specifications are as in [2]. 
OSA90/hope [3] built-in linear elements connected by 
circuit theory form the “coarse” model.  Sonnet’s em [4] 
driven by Empipe [3] forms the fine model, using a high-
resolution grid. 
The SM-based neuromodel of the HTS filter of [1] is used.  
This model was obtained assuming that the design 
parameters are xf = [L1 L2 L3 S1 S2 S3] T, and taking L0 = 50 
mil, H = 20 mil, W = 7 mil, εr = 23.425, loss tangent = 
3×10−5; the metalization was considered lossless.  The 
corresponding SM-based neuromodel is illustrated in Fig. 2, 
which implements a frequency partial-space mapped 
neuromapping with 7 hidden neurons, mapping only L1, S1 
and the frequency (3LP:7-7-3).  L1c and S1c in Fig. 2 denote 
the corresponding physical dimensions used by the coarse 
model, i.e., after being transformed by the mapping.  The 
coarse model is simulated at mapped frequency ωc. 
Applying direct minimax optimization to the coarse model, 
we obtain the optimal coarse solution xc

* = [188.33  197.98  
188.58 21.97  99.12  111.67]T (mils). 

We apply direct minimax optimization to the SM-based 
neuromodel, starting at xc

*, to obtain the optimal SM-based 
neuromodel nominal solution xSMBN

* = [185.79  194.23  
184.91  21.05  82.31  89.32]T (mils). 
For yield analysis, we consider 0.2% of variation for the 
dielectric constant and for the loss tangent, as well as 75 
micron of variation for the physical dimensions, with 
uniform statistical distributions.  We perform Monte Carlo 
yield analysis of the SM-based neuromodel around xSMBN

* 
with 500 outcomes.  The responses for 50 outcomes are 
shown in Fig. 3.  The yield calculation is shown in Fig. 4.  A 
yield of only 18.4% is obtained at xSMBN

*. 
Performing yield analysis using 500 outcomes with the SM-
based neuromodel of the HTS filter takes a few tens of 
seconds on a PC (AMD 640MHz, 256M RAM, Windows 
NT 4.0).  A single outcome calculation for the same circuit 
using an EM simulation takes about 5 hours. 
We then apply yield optimization to the SM-based 
neuromodel with 500 outcomes using the Yield-Huber 
optimizer available in OSA90/hope [3], obtaining the 
optimal yield solution: xSMBN

Y* = [183.04  196.91  182.22  
20.04  77.67  83.09]T (mils).  The corresponding responses 
for 50 outcomes are shown in Fig. 5.  The yield is increased 
from 18.4% to 66%, as shown in Fig. 6. Excellent 
agreement between the EM responses and the SM-based 
neuromodel responses is found at both the optimal nominal 
solution and the optimal yield solution. 

Conclusions 
An efficient procedure to realize EM-based statistical 
analysis and yield optimization of microwave structures 
using space mapping-based neuromodels is described.   
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Fig. 1.  HTS quarter-wave parallel coupled-line microstrip 
filter. 

Fig. 2.  SM-based neuromodel of the HTS filter for yield 
analysis assuming symmetry (L1c and S1c correspond to L1 
and S1 as used by the coarse model). 
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Fig. 3.  Monte Carlo yield analysis of the SM-based 
neuromodel responses around the optimal nominal solution 
xSMBN

* with 50 outcomes. 
 

Fig. 4.  Histogram of the yield analysis of the SM-based 
neuromodel around the optimal nominal solution  xSMBN

* 
with 500 outcomes. 
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Fig. 5.  Monte Carlo yield analysis of the SM-based 
neuromodel responses around the optimal yield solution 
xSMBN

 Y* with 50 outcomes. 

Fig. 6.  Histogram of the yield analysis of the SM-based 
neuromodel around the optimal yield solution xSMBN

Y* with 
500 outcomes (considering symmetry). 
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