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Artificial Neural Networks (ANN) Modeling

ANNs are suitable in modeling high-dimensional and highly nonlinear problems

ANN models are computationally efficient and more accurate than empirical models

multilayer feedforward networks can approximate any function 

to any desired level of accuracy (White et al., 1992)

ANNs that are too small cannot approximate the desired input-output relationship

ANNs with too many internal parameters perform correctly in the learning 

set, but give poor generalization ability

ANNs are suitable models for microwave circuit optimization and 

statistical design (Zaabab, Zhang and Nakhla, 1995, Gupta et al., 1996, 

Burrascano and Mongiardo, 1998, 1999)
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Conventional ANN Modeling Approach

ANN

fine

model

w

R
fx
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»  R
f

w

many fine model simulations are usually 

needed

the number of learning samples grows 

exponentially with the dimensionality 

(Stone, 1982)

the reliability of multi-layer perceptrons 

for extrapolation is poor

introducing knowledge can alleviate 

these limitations
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Hybrid “S” EM-ANN Neuromodeling Concept

(Gupta et al., 1996)
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PKI Neuromodeling Concept

(Gupta et al., 1996)

coarse

model
cR

ANN

fx

fRfine

model

fR»

w

w

coarse

model

ANN

PKI model

R
c

» R
fx

f

w

Simulation Optimization Systems Research Laboratory
McMaster University



KBNN Neuromodeling Concept

(Zhang et al., 1997)
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Exploiting Space Mapping for Neuromodeling

(Bandler et. al., 1999)
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Space Mapping Based Neuromodeling

(Bandler et. al., 1999)
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Neuromappings

Space Mapped neuromapping
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Neuromappings (continued)

Frequency Mapped neuromapping
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Neuromappings (continued)

Frequency Partial-Space 

Mapped neuromapping
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it is not always necessary to 

map the whole set of design 

parameters

coarse model sensitivities can 

be used to select the mapped 

parameters
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r is the number of responses in the model

P is the neuromapping function and w contains the free parameters of the ANN

2n+1 is the number of training base points and Fp is the number of frequency points

Huber optimization is used to solve this problem

Training the SM-Based Neuromodel 
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Starting Point and Learning Samples

we chose a unit mapping (xc = x f and wc = w) as the starting point for the optimization 

problem

2n+1 points are used for a microwave circuit with n design parameters

x
f 1

x
f 2

x
f 3
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Microstrip Right Angle Bend

region of interest

20mil  W  30mil

8mil  H  16mil

8  er  10

1GHz  w  41GHz
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“coarse” model: equivalent circuit 

model (Gupta, Garg and Bahl, 1979)

“fine” model: Sonnet’s em

learning set: 7 base points with “star” 

distribution

testing set: 50 random base points



Microstrip Right Angle Bend Coarse Model Errors

comparison between em and coarse model at 50 random test points
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SM Neuromodel for the Right Angle Bend (3LP:3-6-3)
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SM Neuromodel Results for the Right Angle Bend

comparison between em and the SM neuromodel
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FDSM Neuromodel for the Right Angle Bend (3LP:4-7-3)
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FDSM Neuromodel Results for the Right Angle Bend

comparison between em and the FDSM neuromodel
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FSM Neuromodel for the Right Angle Bend (3LP:4-8-4)
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FSM Neuromodel Results for the Right Angle Bend

comparison between em and the FSM neuromodel

1 6 11 16 21 26 31 36 41

frequency (GHz)

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

E
rr

o
r 

in
 |S

1
1
|

1 6 11 16 21 26 31 36

frequency (GHz)

0

0.01

0.02

0.03

0.04

0.05

E
rr

o
r 

in
 |S

2
1
|

41

Simulation Optimization Systems Research Laboratory
McMaster University



Implementations in NeuroModeler

SM based neuromodels of several 

microstrip circuits have been 

developed using NeuroModeler

version 1.2b (1999)

they are entered into HP ADS 

version 1.1 (1999) as library 

components through an ADS 

plugin module
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HTS Quarter-Wave Parallel Coupled-Line Microstrip Filter

(Westinghouse, 1993)

region of interest
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HTS Microstrip Filter: Fine and Coarse Models

fine model: 

Sonnet’s em with high resolution 

grid
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1

2

coarse model:

OSA90/hope built-in models of open 

circuits, microstrip lines and coupled 

microstrip lines



HTS Filter Responses Before Neuromodeling

responses using em (·) and OSA90/hope (-) at three learning and three test points
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HTS Coarse Model Error w.r.t. em before any Neuromodeling
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in the learning set in the testing set

learning set: 13 base points with “star” distribution

testing set: 7 random base points in the region of interest 

(not seen in the learning set)
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FM Neuromodel for the HTS Filter (3LP:7-5-1)
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FM Neuromodel for the HTS Filter (3LP:7-5-1)

responses using em (·) and FMN model (-) at the three learning and three testing points
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HTS FM Neuromodel Error w.r.t. em

in the learning set in the testing set

3.901 3.966 4.031 4.096 4.161

frequency (GHz)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

E
rr

o
r 

in
 |S

2
1
|

3.901 3.966 4.031 4.096 4.161

frequency (GHz)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

E
rr

o
r 

in
 |
S

2
1
|

Simulation Optimization Systems Research Laboratory
McMaster University



FPSM Neuromodel for the HTS Filter (3LP:7-7-3)
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FPSM Neuromodel for the HTS Filter (3LP:7-7-3)

responses using em (·) and FPSMN model (-) at the three learning and three testing points
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HTS FPSM Neuromodel Error w.r.t. em

in the learning set in the testing set
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FPSM Neuromodel for the HTS Filter: Fine Frequency Sweep Results

comparison between em (·) and FPSMN model (-) at two learning and one testing points
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Other Applications of SM based Neuromodels

(Bandler et al., 2000, 2001)

Neural Space Mapping (NSM) Optimization

EM-based Statistical Analysis

EM-based Yield Optimization

Neural Inverse Space Mapping (NISM) Optimization
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