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Abstract

The Space Mapping concept intelligently links companion “coarse” and “fine” engineering models of different complexities, e.g., full-

wave electromagnetic (EM) simulations and empirical circuit-theory based models.

A comprehensive framework to engineering device modeling which we call Generalized Space Mapping (GSM) has been developed. GSM

is a tableau-based approach. It permits many different practical implementations. As a result the accuracy of available empirical models of

microwave devices can be significantly enhanced in selected regions of interest in the parameter space. We present two fundamental

illustrations: a basic Space Mapping Super Model (SMSM) which maps designable device parameters and a Frequency-Space Mapping

Super Model (FSMSM) which also maps the frequency variable. The SMSM and FSMSM concepts have been verified on several

modeling problems, typically utilizing a few relevant full-wave EM simulations. We present several microstrip examples, yielding

remarkable modeling improvement.

We consider the GSM technique to be very easy to implement. It has been reported to be very useful in the RF industry for development

of new library models involving commercial software such as Agilent Momentum and ADS.

Accurate yield optimization and statistical analysis of microwave components are crucial for manufacturability-driven designs in a time-to-

market development environment. Yield optimization requires intensive simulations to cover the entire statistic of possible outputs of a

given manufacturing process. An efficient procedure to realize EM-based yield optimization and statistical analysis of microwave

structures using space mapping based neuromodels will be presented. Several practical microwave components illustrate our technique

using commercial EM simulators.
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Outline

Generalized Space Mapping (GSM) tableau approach is a comprehensive 

framework for engineering device modeling (Bandler et al., 2001)

Neural Space Mapping (NSM) optimization exploiting SM-based 

neuromodeling techniques (Bakr et al., 2000)

statistical analysis and yield optimization using SM-based 

neuromodels (Bandler et al., 2001)
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Multiple Space Mapping (MSM) Concept

MSM for Device Responses (MSMDR)
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Multiple Space Mapping (MSM) Concept

MSM for Frequency Intervals (MSMFI)
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Mathematical Formulation for GSM

the kth mapping is given by

in matrix form, assuming a linear mapping

the mapping parameters                                         can be evaluated 

by solving the optimization problem

where m is the number of base points selected in the fine model 

space and      is an error vector given by
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Mathematical Formulation for GSM (continued)

we impose constraints on the mapping parameters such that they are 

as close as possible to those corresponding to a unit mapping

the objective function is modified as  

where

T
kk

T
kn

T
k

T
k

T
k

T
kk ]ΔΔΔ[ 1 = bbtscβ 

IBB −= kkΔ

1Δ −= kk

Simulation Optimization Systems Research Laboratory
McMaster University

,
1 1 2 2

,

min [ ]
T T T T

k k km k

k k k k k k

w w
σ δ

+
, , , 

e e e β
c B s t



An Implementation of SMSM and FSMSM

select m base points                                  in the region of interest (star distribution)

for SMSM apply direct optimization to solve

explicitly setting

for FSMSM apply direct optimization to solve 
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Microstrip Shaped T-Junction

the fine and coarse models
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Microstrip Shaped T-Junction

the region of interest

15 mil  H  25 mil

2 mil  X  10 mil

15 mil  Y  25 mil

8   10

the frequency range is 2 GHz to 20 GHz with a step of 2 GHz

the number of base points is 9, the number of test points is 50

the widths W of the input lines track H so that their 

characteristic impedance is 50 ohm

W1 = W/3

W2 is suitably constrained

rε
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Microstrip Shaped T-Junction

MSMFI is developed to enhance the accuracy of the coarse model

our algorithm determined two intervals: 2-16 GHz and 16-20 GHz

2 GHz to 16 GHz 16 GHz to 20 GHz

B





























−−−

−−−−

−−

−−−−

−−−

−−−

−

  0.83      0.03     0.07    0.00     0.03   0.12      0.08

0.62      0.99      0.12       0.16 0.04   0.05  0.13

 0.03   0.05  0.99       0.03      0.00      0.04     0.01    

0.27   0.06  0.10      0.97       0.01  0.00     0.04

0.06   0.01     0.12  0.04       0.99      0.07     0.00

0.03   0.06     0.20  0.07   0.00       0.89     0.00   

0.22      0.00      0.06   0.08      0.01       0.07     1.04  





























−−−

−−−−

−−

−−−−−

−−

−−−

−−−

 0.87    0.03    0.07  0.02     0.04  0.22     0.13

0.51     1.03     0.23    0.15  0.05 0.02  0.14

0.12 0.04  1.07     0.11      0.03    0.04      0.08   

.27 0.09  0.13    0.88     0.03  0.06 0.10

0.02     0.00   0.25  0.04      0.98     0.15    0.06

0.01  0.01    0.28  0.07  0.01      0.85    0.05   

0.13     0.01  0.09  0.01     0.00  0.02    0.99   

0  

c
T

] 0.03    0.07    0.01   0.03    0.01    0.01     0.02  [ −−−− T
0.03]  0.05   0.01   0.03    0.01    0.01   0.01 [ −−−−

s
T

] 0.20   0.02    0.00     0.02   0.10    0.09    0.01[ −−−−− T
0.02]   0.00    0.00     0.00     0.01   0.01    0.00 [ −−

t 0

T
0.00]     0.00     0.00     0.00    0.02    0.00     0.01 [ −

σ  0.851 0.957

δ
−0.003 0.008

Simulation Optimization Systems Research Laboratory
McMaster University



Microstrip Shaped T-Junction

the responses at two test points in the region of interest by Sonnet’s em (•):

the coarse model (---), the enhanced coarse model (—)
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Microstrip Shaped T-Junction

the errors of the coarse model responses at the test points
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Microstrip Shaped T-Junction

the errors of the enhanced coarse model responses at the test points
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Microstrip Shaped T-Junction Optimization

the enhanced coarse model is utilized

the optimization variables are X and Y

W = 24 mil, H = 25 mil and              

specifications

in the frequency range 2 GHz to 20 GHz

OSA90/hope minimax optimization reached 

X = 4.31 mil and Y = 19.77 mil

9.9=rε

3/1,3/1 2211  SS
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Microstrip Shaped T-Junction Optimization

optimum responses by Sonnet’s em (•):

the coarse model (---), the enhanced coarse model (—)
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Artificial Neural Networks (ANN) in Microwave Design

ANNs are suitable models for microwave circuit optimization 

and statistical design (Zaabab, Zhang and Nakhla, 1995, 

Gupta et al., 1996, Burrascano and Mongiardo, 1998, 1999)

once trained, neuromodels can be used for 

optimization in the training region

the principal drawback of this ANN optimization approach 

is the cost of generating sufficient learning samples

the extrapolation ability of neuromodels is poor, making 

unreliable any solution predicted outside the training region

introducing knowledge can alleviate these limitations

(Gupta et al., 1999)
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Conventional ANN Optimization Approach

step 1 step 2

many fine model simulations are usually needed

solutions predicted outside the training region are unreliable 
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Neural Space Mapping (NSM) Optimization

(Bandler et al., 2000)

exploits the SM-based neuromodeling techniques 

(Bandler et al., 1999)

coarse models are used as sources of knowledge to reduce 

learning data and improve generalization and extrapolation

NSM requires a reduced set of upfront learning base points

initial learning base points are selected through 

coarse model sensitivity analysis 

neuromappings are developed iteratively: generalization is 

controlled by gradually increasing complexity from a 3-layer 

perceptron with 0 hidden neurons
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Neural Space Mapping (NSM) Optimization Concept

step 1 step 2

(2n + 1 learning base points for a 

microwave circuit with n design 

parameters)
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Neural Space Mapping (NSM) Optimization Concept (continued)
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Neural Space Mapping (NSM) Optimization Algorithm
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HTS Quarter-Wave Parallel Coupled-Line Microstrip Filter

(Westinghouse, 1993)

we take L0 = 50 mil, H = 20 mil, 

W = 7 mil, er = 23.425, loss 

tangent = 310−5; the 

metalization is considered 

lossless 

the design parameters are 
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NSM Optimization of the HTS Microstrip Filter

specifications

|S21|  0.95 for 4.008 GHz  w  4.058 GHz

|S21|  0.05 for w  3.967 GHz and w  4.099 GHz 

“fine” model: Sonnet’s em with high resolution grid 

“coarse” model: OSA90/hope built-in models of open circuits, 

microstrip lines and coupled microstrip lines
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NSM Optimization of the HTS Filter (continued)

coarse and fine model responses at the optimal coarse solution 

OSA90/hope (−) and em (•)
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NSM Optimization of the HTS Filter (continued)

the initial 2n+1 points are chosen by performing sensitivity analysis on the coarse model: a 

3% deviation from xc
* for L1, L2, and L3 is used, while a 20% is used for S1, S2, and S3

coarse and fine model responses at base points 
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NSM Optimization of the HTS Filter (continued)

learning errors at base points 

before any neuromapping mapping w , L1 and S1 with a 3LP:-7-5-3
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NSM Optimization of the HTS Filter (continued)

fine model response (•) at the next point predicted by the first NSM 

iteration and optimal coarse response (−)

(3LP:7-5-3,w, L1, S1)
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Bandstop Microstrip Filter with Quarter-Wave Open Stubs

we take H = 25 mil, W0 = 25 

mil, er = 9.4 (alumina)

the design parameters are 

xf = [W1 W2 L0 L1 L2] 
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NSM Optimization of the Bandstop Filter

specifications

|S21|  0.05 for 9.3 GHz  w  10.7 GHz

|S21|  0.9 for w  8 GHz and w  12 GHz 

“fine” model: Sonnet’s em with high resolution grid 

“coarse” model: transmission line sections and empirical formulas
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NSM Optimization of the Bandstop Filter (continued)

coarse and fine model responses at the optimal coarse solution 

coarse model (−) and em (•)

the initial 2n+1 points are chosen by performing sensitivity analysis on the coarse model: 

a 50% deviation from xc
* for W1, W2, and L0 is used, while a 15% is used for L1, and L2
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NSM Optimization of the Bandstop Filter (continued)

fine model response (•) at the point predicted by the second 

NSM iteration and optimal coarse response (−)

(3LP:6-3-2,w,W2)
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EM-based Yield Optimization Via SM-Based Neuromodels

(Bandler et. al., 2001)

the SM-based neuromodel responses are given by

with

where the mapping function P is implemented by a 

neuromapping variation (SM, FDSM, FSM, FM or FPSM)
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Yield Optimization Via SM-Based Neuromodels (continued)

for all xf and ω in the training region

we can show that

Jf  rn Jacobian of the fine model responses w.r.t. the fine model parameters

Jc  r(n+1) Jacobian of the coarse model responses w.r.t. the coarse model 

parameters and mapped frequency

JP  (n+1)n Jacobian of the mapping function w.r.t. the fine model parameters

),(),( ww fSMBNff xRxR »

Pcf JJJ »
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Yield Optimization of the HTS Filter
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Yield Optimization of the HTS Filter

at the nominal solution (starting point): yield = 18.4%
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Yield Optimization of the HTS Filter (continued)

at the optimal yield solution: yield = 66%
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Conclusions

Generalized Space Mapping (GSM) is an engineering device 

modeling framework that exploits Frequency Space Mapping (FSM) 

and Multiple Space Mapping (MSM)

we describe an algorithm for EM optimization based on Space 

Mapping technology and Artificial Neural Networks

Neural Space Mapping (NSM) optimization exploits our 

SM-based neuromodeling techniques

we exploit SM-based neuromodels for EM statistical 

analysis and yield optimization
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