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Abstract   Accurate yield optimization and statistical analysis of microwave components are crucial 

ingredients for manufacturability-driven designs in a time-to-market development environment.  Yield 

optimization requires intensive simulations to cover the entire statistic of possible outcomes of a given 

manufacturing process.  Performing direct yield optimization using accurate full wave electromagnetic 

simulations does not appear feasible.  In this work, an efficient procedure to realize electromagnetics-

based yield optimization and statistical analysis of microwave structures using space mapping-based 

neuromodels is proposed. Our technique is illustrated by the EM-based statistical analysis and yield 

optimization of an HTS microstrip filter.     

I.  INTRODUCTION 

Electromagnetic (EM) full-wave field solvers are regarded as highly accurate to predict the 

behavior of microwave structures.  With the increasing availability of commercial EM simulators, it is 

very desirable to include them in the statistical analysis and yield-driven design of microwave circuits.  

Given the high cost in computational effort imposed by the EM simulators, creative procedures must be 
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searched to efficiently use them for statistical analysis and design. 

Yield-driven EM optimization was proposed in [1] by using multidimensional quadratic models 

that approximate the EM model responses for efficient and accurate evaluations.  A more integrated CAD 

environment for statistical analysis and yield-driven circuit design was later proposed in [2], where the 

quadratic modeling techniques and interpolation techniques (to deal with the discretization of the 

geometrical parameters of the EM structure) were unified.  

For the first time, we propose in this work the use of space mapping (SM)-based neuromodels for 

efficient and accurate EM-based statistical analysis and yield optimization of microwave structures.  We 

briefly review the use of artificial neural networks (ANNs) for the design by optimization of microwave 

circuits.  We mathematically formulate the yield optimization problem using SM-based neuromodels. A 

general equation to express the relationship between the fine and coarse model sensitivities through a 

nonlinear, frequency-sensitive neuromapping is presented.  We illustrate our technique by the yield 

analysis and optimization of a high-temperature superconducting (HTS) quarter-wave parallel coupled-

line microstrip filter. 

II. A BRIEF REVIEW ON OPTIMIZATION OF MICROWAVE  

CIRCUITS USING NEURAL NETWORKS 

Neural networks have been extensively used for modeling in many different variations [3-5].  In 

contrast, the use of neural networks for design by optimization is at an earlier stage: a few variations in 

the use of neural networks for optimization of microwave circuits have been reported. 

The most widely used technique for neural optimization of microwave circuits consists of 

generating a neuromodel of the microwave circuit within a certain training region of the design 

parameters, and then apply conventional optimization to the neuromodel to find the optimal solution that 

yields the desired response.  A neuromodel can be developed for the whole microwave circuit to be 

optimized, or in a decomposed fashion, where small neuromodels are developed for each individual 

component in the circuit, which are later connected by circuit theory.  Full wave EM simulations are 

typically employed to generate the training data.  The generalization ability of the neuromodel(s) is 
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controlled during the training process by using validation data and testing data, also obtained from EM 

simulations.  Examples of this neural optimization approach can be found in [6-10]. 

The previous neural optimization approach has two main disadvantages: the time required to 

generate sufficient training, validation and testing samples, and the unreliability of the optimal solution 

when it lies outside the training region, due to the poor extrapolation performance of ANNs. 

One way to decrease the amount of up-front EM simulations is proposed in [3], where the 

neuromodel to be optimized consists of several neural networks, each of them specialized for a cluster of 

responses that were previously identified. 

Both limitations of the conventional neural optimization approach have been alleviated by 

incorporating prior knowledge into the neural network structure, following an EM-ANN approach [11], or 

a neural space mapping (NSM) approach [4].  In [12], an EM-ANN approach was used to optimize a 

CPW patch antenna.  Similarly, an end-coupled band-pass filter in a 2-layer configuration was designed 

in [13] following also an EM-ANN approach.  NSM optimization was used in [14-15] to design a 

bandstop microstrip filter with open stubs and an HTS microstrip filter; NSM optimization has the 

additional advantage of not requiring neither validation nor training data, since it employs a neural 

network growing strategy to control the generalization performance. 

A fifth variation for the design of microwave circuits with ANNs is by using synthesis neural 

networks.  A synthesis neural network is trained to learn the mapping from the responses to the design 

parameters of the microwave circuit.  In this sense, a conventional neuromodel becomes an analysis 

neural network.  The problem of training a synthesis neural network is known as the inverse modeling 

problem, since the input and output variables are interchanged. 

The analysis problem is characterized by a single-value mapping: given a vector of design 

parameters we have only one possible vector of responses.  However, for inverse problems, the mapping 

can often be multivalued: a given vector of responses can be generated by several different vectors of 

design parameters.  This leads the synthesis neural network to make poor generalizations.  Another 

complication of the inverse modeling problem is the coverage of the input space by the training data, 
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since the full characterization of the input space (microwave circuit responses) is usually not available. 

A dedicated algorithm for the design of multi-layer asymmetric coupled transmission structures 

using a combination of analysis and synthesis neural networks was successfully developed in [16].  Here, 

the input space of the synthesis neural network is not the set of S parameters, but a set of LC parameters 

that are later translated into the conventional responses. 

In practice, random variations in the manufacturing process of a microwave device may result in 

a significant percentage of the produced devices not meeting the specifications.  When designing, it is 

essential to account for these inevitable uncertainties.  Many significant contributions have been made to 

the statistical analysis and design of microwave circuits (e.g., [1, 2 and 17]).  Nevertheless, the use of 

neuromodels for statistical analysis and yield optimization of microwave circuits has not been extensively 

exploited [18]. 

We propose in this work the use of space mapping based neuromodels for efficient EM-based 

statistical analysis and yield optimization of microwave circuits. 

III.  STATISTICAL CIRCUIT ANALYSIS AND DESIGN: PROBLEM FORMULATION 

Let x ∈ ℜn represent the vector of n design parameters of the microwave device whose r 

responses at frequency ω are contained in vector R (x ,ω) ∈ ℜr (for example, R(x ,ω) might contain the 

real and imaginary parts of S11 at 10 GHz for a given physical structure).  

The design goals are defined by a vector Su(ω) ∈ ℜr of upper specifications and a vector Sl(ω) ∈ 

ℜr of lower specifications imposed on the responses R(x ,ω) at each frequency of interests. A lower 

specification on the kth response at frequency ω requires Rk(x, ω) ≥ Slk(ω) while an upper specification 

requires Rk(x, ω) ≤ Suk(ω).  It is possible to impose both a lower and an upper specification on a single 

response. 

Two error vectors eu, el ∈ ℜr can be used to measure the degree to which a response satisfies or 

violates the specifications,  

),()(),( ωωω xRSxe −= ll  (1) 
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Nonnegative weighting factors can be included in (1-2) for scaling purposes.  In practice, vectors (1-2) are 

sampled at a finite set of frequency points of interest, not necessarily overlapping.  The corresponding two 

sets of vectors can be combined in a single error vector  
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whose dimensionality is denoted by M.  Clearly, negative components in e indicate satisfaction of the 

corresponding specifications. 

 In the nominal design, we are interested in finding a single vector of design parameters x*, called 

optimal nominal solution, for which the responses R(x*) optimally satisfy the design specifications Su and 

Sl at all frequency points of interest.  Following [19], this task can be formulated as a minimax 

optimization problem 
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where ej(x) is the jth element in the error vector (3), with j = 1…M. 

In the statistical approach to circuit design, we take into account that the design parameters of the 

manufactured device outcomes xk are actually spread around the nominal point x according to their 

statistical distributions and tolerances.  These parameters can be represented as 

kk ∆xxx += ,   k = 1, 2, …, N (6) 

where N is the number of such outcomes.  We associate with each outcome an acceptance index defined 

by 
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If N is sufficiently large for statistical significance, we can approximate the yield Y at the nominal 

point x by using 
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An error vector e(xk) ∈ ℜM is associated with each circuit outcome xk according to (1)-(3).  

Following [19], the optimal yield solution xY* can be found by solving 

∑
∈

=
Kk

k
k

Y H )(minarg 1
* xxx α  

{ }0)(1 >= kHkK x  

(9) 
 
 

(10) 

where H1(xk) is the generalized l1 function 
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and αk are positive multipliers calculated from 
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where x(0) is the starting point, for which a good candidate is the optimal nominal solution x*.  It is seen 

that the optimal yield objective function in (9) equals the number of failed circuits Nfail at the starting 

point, and provides a continuous approximation to Nfail during optimization.  If necessary, yield 

optimization can be restarted with αk updated with the current solution.  We use in this work the highly 

efficient implementation of yield analysis and optimization available in OSA90/hope [20]. 

IV.  YIELD ANALYSIS AND OPTIMIZATION USING   

SPACE MAPPING BASED NEUROMODELS 

We propose the use of SM-based neuromodels to perform accurate and efficient yield analysis 

and optimization of microwave devices.  The aim is to combine the computational efficiency of coarse 

models (typically equivalent circuit models) with the accuracy of fine models (typically EM simulators).  
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We assume that the SM-based neuromodel is already available, obtained either from a modeling process 

[4] or from an optimization process [15]. 

Let the vectors xc, xf ∈ ℜn represent the design parameters of the coarse and fine models, 

respectively.  In general, the operating frequency ω, used by the fine model, can be different to that one 

used by the coarse model, denoted as ωc.  Let Rc(xc,ωc), Rf (xf,ω) ∈ ℜr represent the coarse and fine model 

responses at the frequencies ωc and ω, respectively.  We denote the corresponding SM-based neuromodel 

responses at frequency ω as RSMBN (xf,ω), given by 

),(),( cccfSMBN ωω xRxR =  (14) 

with 

),( ω
ω f

c

c xP
x
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(15) 

where the mapping function P is implemented by a neural network following any of the 5 neuromapping 

variations (SM, FDSM, FSM, FM or FPSM) described in [15].  As stated before, we assume that a 

suitable mapping function P has already been found (i.e., a neural network with suitable complexity has 

already been trained). 

If the SM-based neuromodel is properly developed,  

),(),( ωω fSMBNff xRxR ≈  (16) 

for all xf and ω in the training region.  The Jacobian of the fine model responses w.r.t. the fine model 

parameters, Jf ∈ ℜr×n, is defined as 
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On the other hand, the Jacobian of the coarse model responses w.r.t. the coarse model parameters 

and mapped frequency, denoted by Jc ∈ ℜr×(n+1), is given by 
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while the Jacobian of the mapping w.r.t. the fine model parameters, denoted by JP ∈ ℜ(n+1)×n, is given by 
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(19) 

 From (17)-(19), the sensitivities of the fine model responses can be approximated using 

Pcf JJJ ≈  (20) 

 The accuracy of the approximation of Jf using (20) will depend on how well the SM-based 

neuromodel reproduces the behavior of the fine model in the training region, i.e. it will depend on the 

accuracy of the approximation (16). 

(20) represents a generalization of the lemma found in [21], where a linear, frequency-insensitive 

mapping function was assumed.  Naturally, (20) will be accurate over a larger region since the mapping is 

nonlinear and frequency-sensitive, which has proved to be a very significant advantage when dealing with 

coarse models based on quasi-static approximations.   

If the mapping is implemented with a 3-layer perceptron with h hidden neurons, (15) is given by 

o
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o
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where W 

o ∈ ℜ(n+1)×h is the matrix of output weighting factors, bo∈ ℜn+1 is the vector of output bias 

elements, ΦΦΦΦ ∈ ℜh is the vector of hidden signals, s ∈ ℜh is the vector of activation potentials, W 

h ∈ 
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ℜh×(n+1) is the matrix of hidden weighting factors, bh∈ ℜh is the vector of hidden bias elements and h is the 

number of hidden neurons.  A typical choice for the nonlinear activation functions is hyperbolic tangents, 

i.e., ϕ(⋅) = tanh(⋅).  All the internal parameters of the neural network, bo, bh, W 

o and  W 

h are constant since 

the SM-based neuromodel has been already developed. 

The Jacobian JP is obtained from (21-23) as 

ho
P WJWJ Φ=  (24) 

where JΦ ∈ ℜh×h is a diagonal matrix given by JΦ = diag(ϕ ' (sj)), with j = 1… h. 

If the SM-based neuromodel uses a 2-layer perceptron, the Jacobian JP is simply 

o
P WJ =  (25) 

which corresponds to the case of a frequency-sensitive linear mapping.  Notice that by substituting (25) in 

(20) and assuming a frequency-insensitive neuromapping we obtain the lemma found in [21], since in the 

case of a 2-layer perceptron with no frequency dependence, W 

o ∈ ℜn×n.  

V.  EXAMPLE 

Consider a high-temperature superconducting (HTS) quarter-wave parallel coupled-line 

microstrip filter [4, 15].  The physical structure of the HTS filter is illustrated in Fig. 1. 

L1, L2 and L3 are the lengths of the parallel coupled-line sections and S1, S2 and S3 are the gaps 

between the sections.  The width W is the same for all the sections as well as for the input and output 

lines, of length L0.  A lanthanum aluminate substrate with thickness H and dielectric constant εr is used. 

The specifications are |S21| ≥ 0.95 in the passband and |S21| ≤ 0.05 in the stopband, where the 

stopband includes frequencies below 3.967 GHz and above 4.099 GHz, and the passband lies in the range 

[4.008GHz, 4.058GHz]. 

OSA90/hope [20] built-in linear elements MSL (microstrip line), MSCL (two-conductor 

symmetrical coupled microstrip lines) and OPEN (open circuit) connected by circuit theory over the same 

MSUB (microstrip substrate definition) are taken as the “coarse” model, whose schematic representation 

is illustrated in Fig. 2. 
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Sonnet’s em [22] driven by Empipe [20] was employed as the fine model, using a high-

resolution grid with a 1mil×1mil cell size. 

A.  Yield Analysis and Optimization Assuming Symmetry 

The SM-based neuromodel of the HTS filter obtained in [4] is used to perform yield analysis and 

optimization.  This model was obtained assuming that the design parameters are xf = [L1 L2 L3 S1 S2 S3] T, 

and taking L0 = 50 mil, H = 20 mil, W = 7 mil, εr = 23.425, loss tangent = 3×10−5; the metalization was 

considered lossless.  The corresponding SM-based neuromodel is illustrated in Fig. 3, which implements 

a frequency partial-space mapped neuromapping with 7 hidden neurons, mapping only L1, S1 and the 

frequency (3LP:7-7-3).  L1c and S1c in Fig. 3 denote the corresponding two physical dimensions as used by 

the coarse model, i.e., after being transformed by the mapping.  Notice from Fig. 1 that it is assumed that 

the structure of the HTS filter posses vertical and horizontal physical symmetry.  

Applying direct minimax optimization to the coarse model, we obtain the optimal coarse solution 

xc
* = [188.33  197.98  188.58 21.97  99.12  111.67]T (mils).  The coarse model response at xc

* is shown in 

Fig. 4.  The fine model response at the optimal coarse solution is shown in Fig. 5 using a fine frequency 

sweep. 

We apply direct minimax optimization to the SM-based neuromodel, taking xc
* as the starting 

point, to obtain the optimal SM-based neuromodel nominal solution xSMBN
* = [185.79  194.23  184.91  

21.05  82.31  89.32]T (mils).  Fig. 6 shows excellent agreement between the SM-based neuromodel 

response and the fine model response at xSMBN
*. 

To realize yield analysis, we consider 0.2% of variation for the dielectric constant and for the loss 

tangent, as well as 75 micron of variation for the physical dimensions, as suggested in [23], with uniform 

statistical distributions.  These tolerances are larger than other typical manufacturing tolerances reported 

in the literature [3]. 

We perform Monte Carlo yield analysis of the SM-based neuromodel around xSMBN
* with 500 

outcomes using OSA90/hope [20].  The responses for 50 of those outcomes are shown in Fig. 7.  The 
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yield calculation is shown in Fig. 8.  A yield of only 18.4% is obtained at xSMBN
*, which is reasonable 

considering the well-known high sensitivity of this microstrip circuit.   

Performing yield analysis using 500 outcomes with the SM-based neuromodel of the HTS filter 

takes a few tens of seconds on a conventional computer (PC AMD 640MHz, 256M RAM, on Windows 

NT 4.0), while a single outcome calculation for the same circuit using an EM simulation takes around 5 

hours on the same computer.  The SM-based neuromodel makes feasible the EM-based yield analysis of 

this complex microwave structure. 

We then apply yield optimization to the SM-based neuromodel with 500 outcomes using the 

Yield-Huber optimizer available in OSA90/hope [20], obtaining the following optimal yield solution: 

xSMBN
Y* = [183.04  196.91  182.22  20.04  77.67  83.09]T (mils).  The corresponding responses for 50 of 

those outcomes are shown in Fig. 9.  The yield is increased from 18.4% to 66%, as shown in Fig. 10.  

Once again, an excellent agreement is observed between the fine model response and the SM-based 

neuromodel response at the optimal yield solution xSMBN
Y* (see Fig. 11). 

B.  Considering Asymmetric Variations Due to Tolerances  

It is clear that our SM-based neuromodel assumes that the random variations in the physical 

design parameters due to the tolerances are symmetric (see Figs. 1 and 3).  In order to make a more 

realistic statistical analysis of the HTS filter, we consider that all the lengths and separations in the 

structure are asymmetric, as illustrated in Fig. 12.  Developing a new SM-based neuromodel for this 

asymmetric structure would be very time consuming, since the dimensionality of the problem becomes 

very large, and many additional fine model training points would be needed.  We have carried out several 

experiments that lead us to believe that the neuromapping obtained from symmetrical training data can be 

reused to build a first-order approximation of the fine model with asymmetric design parameter values.  

We propose the strategy illustrated in Fig. 13.  In this approach, we reuse the available neuromapping to 

take into account asymmetric random variations in the physical parameters due to their tolerances, taking 

advantage of the original asymmetric nature of the coarse model (compare Figs. 3 and 13).   

L1ac and S1ac in Fig. 13 now represent the corresponding length and separation for the coarse 
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model component in the left side of the structure (left most coupled-line module, see Fig. 2), while L1bc 

and S1bc represent the corresponding dimensions for the right section (right most coupled-line module, see 

Fig. 2).  Notice also that assigning a separate neuromapping to each of these sections (see Fig. 13) makes 

physical sense, since the electromagnetic interaction between the microstrip lines in either the lower-left 

or upper-right parts of the structure is much larger than that one between the left-right or lower-upper 

microstrip lines.  

Reusing the available neuromapping as described here avoids the need for extra fine model 

evaluations.  A complete physical and mathematical justification is required.  It will be addressed in 

future research.  If generally valid, then taking into account the excellent generalization performance of 

our SM-based neuromodel, this approach should provide a good approximation to the yield considering 

that the tolerances are small. 

We perform Monte Carlo yield analysis of the asymmetric SM-based neuromodel around the 

optimal nominal solution xSMBN
* with 500 outcomes.  The corresponding responses for 50 of those 

outcomes are shown in Fig. 14.  The histogram of the yield at the optimal nominal solution xSMBN
* with 

500 outcomes is illustrated in Fig. 15.  A yield of only 14% was obtained for the asymmetric structure.  

We then perform Monte Carlo yield analysis of the asymmetric SM-based neuromodel around the optimal 

yield solution xSMBN
Y* with 500 outcomes; 50 of those outcomes are illustrated in Fig. 16.  The yield 

obtained for the asymmetric structure is 68.8%, as illustrated in Fig. 17. 

VI.  CONCLUSIONS 

An efficient procedure to realize electromagnetics-based statistical analysis and yield 

optimization of microwave structures using space mapping-based neuromodels is proposed.  We briefly 

review the use of neural networks for the design by optimization of microwave circuits.  We 

mathematically formulate the problem of yield optimization using SM-based neuromodels.  A general 

formulation for the relationship between the fine and coarse model sensitivities through a nonlinear, 

frequency-sensitive neuromapping is found.  We avoid the need of extra EM simulations when 

asymmetric variations in the physical parameters due to tolerances are considered, by re-using the 
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available neuromappings on asymmetric coarse models.  We illustrate our techniques by the yield 

analysis and optimization of a high-temperature superconducting (HTS) quarter-wave parallel coupled-

line microstrip filter.  The yield is increased from 14% to 69% for this complex structure.  Excellent 

agreement between the EM responses and the SM-based neuromodel responses is found at both, the 

optimal nominal solution and the optimal yield solution. 
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Fig. 1.  HTS quarter-wave parallel coupled-line microstrip filter. 
 
 

 
 

 
 

Fig. 2.  Schematic representation of the coarse model for the HTS filter. 
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Fig. 3.  SM-based neuromodel of the HTS filter for yield analysis assuming symmetry  
  (L1c and S1c correspond to L1 and S1 as used by the coarse model). 
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Fig. 4.  Optimal coarse model response. 
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Fig. 5.  Fine model response at optimal coarse solution. 
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Fig. 6.  Fine model response and SM-based neuromodel response at the optimal nominal solution xSMBN*. 
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Fig. 7.  Monte Carlo yield analysis of the SM-based neuromodel responses around  

      the optimal nominal solution xSMBN* with 50 outcomes. 
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Fig. 8.  Histogram of the yield analysis of the SM-based neuromodel around the  

        optimal nominal solution  xSMBN* with 500 outcomes. 
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Fig. 9.  Monte Carlo yield analysis of the SM-based neuromodel responses around  

      the optimal yield solution xSMBN Y* with 50 outcomes. 
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Fig. 10.  Histogram of the yield analysis of the SM-based neuromodel around the optimal  

  yield solution  xSMBNY* with 500 outcomes (considering symmetry). 
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Fig. 11.  Fine model response and SM-based neuromodel response at the optimal yield solution xSMBNY*. 
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Fig. 12.  Physical structure of the HTS filter considering asymmetry. 
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Fig. 13.  SM-based neuromodel of the HTS filter with asymmetric tolerances in the physical  
parameters (L1ac and S1ac represent the corresponding length and separation for the  
coarse model components in the left side of the structure -see Figs. 1 and 2- while L1bc  
and S1bc represent the corresponding dimensions for the right section). 
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Fig. 14.  Monte Carlo yield analysis of the SM-based neuromodel responses, considering  

  asymmetry, around the optimal nominal solution  xSMBN* with 50 outcomes. 
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Fig. 15.  Histogram of the yield analysis of the asymmetric SM-based neuromodel around  

  the optimal nominal solution  xSMBN* with 500 outcomes. 
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Fig. 16.  Monte Carlo yield analysis of the SM-based neuromodel responses, considering  

  asymmetry, around the optimal yield solution  xSMBNY* with 50 outcomes. 
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Fig. 17.  Histogram of the yield analysis of the asymmetric SM-based neuromodel  

        around the optimal yield solution  xSMBNY* with 500 outcomes. 
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