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Abstract  We present Neural Inverse Space Mapping (NISM) optimization for electromagnetics-based 

design of microwave structures.  The inverse of the mapping from the fine to the coarse model parameter 

spaces is exploited for the first time in a space mapping algorithm.  NISM optimization does not require 

up-front EM simulations, multipoint parameter extraction or frequency mapping.  It employs a simple 

statistical parameter extraction procedure.  The inverse of the mapping is approximated by a neural 

network whose generalization performance is controlled through a network growing strategy.  We contrast 

our new algorithm with Neural Space Mapping (NSM) optimization as well as with our Trust Region 

Aggressive Space Mapping exploiting Surrogates. 

I.  INTRODUCTION 

Neural networks have been extensively used for modeling microwave devices and circuits, in 

many different ways [1, 2].  In contrast, the use of neural networks for design by optimization is at an 

earlier stage: a few variations in the use of neural networks for optimization of microwave circuits have 
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been reported.  The most widely used strategy for neural optimization of microwave circuits consists of 

generating a neuromodel of the microwave circuit within a certain training region of the design 

parameters, and then applying conventional optimization to the neuromodel to find the optimal solution 

that yields the desired response.  Full wave EM simulations are typically employed to generate the 

training data.  The generalization ability of the neuromodel is controlled during the training process by 

using validation data and testing data, also obtained from EM simulations.  Examples of this neural 

optimization approach can be found in [3-7]. 

Both limitations of the conventional neural optimization approach have been alleviated by 

incorporating prior knowledge into the neural network training scheme, following an EM-ANN approach 

[8, 9], or a neural space mapping (NSM) approach [10, 11].  NSM optimization also avoids the use of the 

validation and testing data typically needed during training. 

An elegant new algorithm for EM-based design of microwave circuits is presented in this work: 

Neural Inverse Space Mapping (NISM) optimization [12].  This is the first Space Mapping (SM) 

algorithm that explicitly makes use of the inverse of the mapping from the fine to the coarse model 

parameter spaces.  NISM follows an aggressive formulation by not requiring a number of up-front fine 

model evaluations to start building the mapping.  A simple procedure for parameter extraction avoids the 

need for multipoint matching and frequency mappings.   

A neural network whose generalization performance is controlled through a network growing 

strategy approximates the inverse of the mapping at each iteration.  The NISM step consists simply of 

evaluating the current neural network at the optimal coarse solution.  We prove that this step is equivalent 

to a quasi-Newton step while the inverse mapping remains essentially linear, and gradually departs from a 

quasi-Newton step as the amount of nonlinearity in the inverse mapping increases. 

We compare our new algorithm with Neural Space Mapping (NSM) optimization [11] by solving 

the same microwave design problems: a bandstop microstrip filter with open stubs and an HTS microstrip 

filter.  We also contrast NISM optimization with Trust Region Aggressive Space Mapping exploiting 

Surrogates. 
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II.  NEURAL INVERSE SPACE MAPPING (NISM) 

A.  Notation 

Let the vectors xc and xf represent the design parameters of the coarse and fine models, 

respectively (xc, xf ∈ ℜn).  We denote the optimizable fine model responses at point xf and frequency ω 

by Rf (xf, ω) ∈ ℜr where r is the number of responses to be optimized.  For example, if the responses to be 

optimized are |S11| and |S21|, then r = 2.  The vector Rf (xf) ∈ ℜm denotes the fine model responses at the Fp 

sample frequency points, where m = rFp.  Similarly, Rc (xc) ∈ ℜm denotes the corresponding coarse model 

responses to be optimized. 

Additionally, we denote the characterizing fine model responses at point xf ∈ ℜn and frequency ω 

by Rfs(xf, ω) ∈ ℜR, which includes the real and imaginary parts of all the available characterizing 

responses in the model (considering symmetry).  For example, for a 2-port reciprocal network they 

include Re{S11}, Im{S11}, Re{S21} and Im{S21}, and R = 4.  The vector Rfs(xf) ∈ ℜM denotes the 

characterizing fine model responses at all the Fp frequency points, where M = RFp.  Similarly, Rcs(xc) ∈ 

ℜM denotes the corresponding characterizing coarse model responses. 

B.  Flow Diagram: an Overview 

A flow diagram for NISM optimization is shown in Fig. 1.  We start by performing regular 

minimax optimization on the coarse model to find the optimal coarse solution xc
* that yields the desired 

response.  The characterizing fine model responses Rfs at the optimal coarse solution xc
* are then 

calculated. 

We realize parameter extraction, which consists of finding the coarse model parameters that 

makes the characterizing coarse responses Rcs as close as possible to the previously calculated Rfs.   

We continue by training the simplest neural network N that implements the inverse of the 

mapping from the fine to the coarse parameter space at the available points. 

The new point in the fine model parameter space is then calculated by simply evaluating the 

neural network at the optimal coarse solution.  If the maximum relative change in the fine model 
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parameters is smaller than a previously defined amount we finish, otherwise we calculate the 

characterizing fine model responses at the new point and continue with the algorithm. 

C.  Parameter Extraction 

 The parameter extraction procedure at the ith NISM iteration is formulated as the following 

optimization problem 

)(minarg)(
cPE

c

i
c U xxx =  

2
2)()( ccPEU xex =  

)()()( )(
ccs

i
ffsc xRxRxe −=  

(1a) 
 
 

(1b) 
 
 

(1c) 

 We solve (1) using the Levenberg-Marquardt algorithm for nonlinear curve fitting available in the 

Matlab Optimization Toolbox [13]. 

 We normally use xc
* as the starting point for solving (1).  This might not be a good starting point 

when an extremely severe matching problem is being solved, one that has some poor local minimum 

around xc
*.  If the algorithm is trapped in a poor local minimum, we change the starting point for (1) by 

taking a small random perturbation ∆x around xc
* until we find an acceptable local minimum, i.e., until 

we obtain a good matching between both fine and coarse models.  

 The maximum perturbation ∆max is obtained from the maximum absolute sensitivity of the 

parameter extraction objective function at xc
* as follows 

∞
∇

=
)( *max

cPE

PE

U x
δ∆  

 
(2) 

 
 

Let rand ∈ ℜn be a vector whose elements take random values between 0 and +1 every time it is 

evaluated.  The values of the elements of ∆x are calculated as 

)12(max −= kk randx ∆∆ ,   k = 1,… , n (3) 

A value of δPE = 0.03 is used in our implementation.  Many other values of δPE could be used in 

(2), since we use it only to escape from a poor local minimum.   
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A similar strategy for statistical parameter extraction was proposed in [14], where an exploration 

region is first created by predefining a fixed number of starting points around xc
*. 

 The algorithm for realizing parameter extraction is stated as follows 

Algorithm: Parameter Extraction 
begin 
         solve (1) using xc

* as starting point 
         while ||e(xc

(i))||∞ > εPE 
                  calculate ∆x using (2) and (3) 
                  solve (1) using xc

*+∆x as starting point 
end 

 

A value of εPE = 0.15 is used in our implementation, assuming that all the response values are normalized. 

D.  Inverse Neuromapping 

When training the neural network N that implements the inverse mapping we solve the following 

optimization problem 

)(minarg* www NU=  

2

2
][)( TT

lNU "" ew =  

),( )()( wxNxe l
c

l
fl −= ,   il ,,1…=  

(4a) 
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(4c) 

where i is the current NISM iteration and vector w contains the internal parameters (weights, bias, etc.) of 

the neural network N.  The starting point w(0) for solving (4) is a unit mapping, i.e. N (xc
(l), w(0)) = xc

(l), for 

l = 1,…, i.  We use the Scaled Conjugate Gradient (SCG) algorithm available in the Matlab Neural 

Network Toolbox [15] for solving (4).  Notice that the time consumed in solving (4) is almost neglectable 

since no coarse or fine model simulations are needed.  

To control the generalization performance of the neural network N, we follow a network growing 

strategy [16], in which case we start with a small perceptron to match the initial points and then add more 

neurons only when we are unable to meet a small error. 

We initially assume a 2-layer perceptron given by 
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o
c
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where W 

o ∈ ℜn×n is the matrix of output weighting factors, bo∈ ℜn is the vector of output bias elements, 

and vector w contains bo and the columns of W 

o.  The starting point is obtained by making W 

o = I and bo 

= 0. 

 If a 2-layer perceptron is not sufficient to make the learning error UN(w*) small enough, then we 

use a 3-layer perceptron with h hidden neurons given by 

o
c

o
c bxΦWwxN += )(),(  

T
hc sss ])()()([)( 21 ϕϕϕ …=xΦ  

h
c

h bxWs +=  

(6a) 
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where W 

o ∈ ℜn×h, bo∈ ℜn, ΦΦΦΦ(xc) ∈ ℜh is the vector of hidden signals, s ∈ ℜh is the vector of activation 

potentials, W 

h ∈ ℜh×n is the matrix of hidden weighting factors, bh∈ ℜh is the vector of hidden bias 

elements and h is the number of hidden neurons.  In this work we use hyperbolic tangents as nonlinear 

activation functions, i.e., ϕ(⋅) = tanh(⋅).  Vector w contains bo, bh, the columns of W 

o and the columns of 

W 

h. 

 Our starting point for solving (4) using (6) is also a unit mapping, which is obtained by making bo 

= 0, bh = 0, W 

h = 0.1[I 0]T and W 

o = 10[I 0], assuming that the training data has been scaled between −1 

and +1.  Notice that we consider h ≥ n in order to achieve the unit mapping. 

 The algorithm for finding the simplest inverse neuromapping is stated as follows 

Algorithm: Inverse Neuromapping 
begin 

solve (4) using (5) 
h = n 
while UN(w*) > εL 

solve (4) using (6) 
h = h+1 

end 
 

In our implementation we use εL = 1×10−4.  Notice that the algorithm for finding the inverse 
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neuromapping uses a 2-layer perceptron during at least the first n+1 NISM iterations, since the points 

(xc
(i), xf

(i)) can be mapped with a linear mapping for i = 1 … n+1.  A 3-layer perceptron is needed only 

when we exceed n+1 NISM iterations and the mapping is significantly nonlinear. 

E.  Termination Criterion 

 As illustrated in the flow diagram of Fig. 1, we stop NISM optimization when the new iterate is 

close enough to the current point.  We do this by testing the relative change in the fine model parameters.  

If the expression 

)1(
2

)(

2

)()1( i
fendend

i
f

i
f xxx εε +≤−+  

 

(7) 

is true, we end NISM optimization taking xf
(i) as the solution, otherwise we continue.  We use εend = 

5×10−3 in our implementation.  Notice that the fine model is not evaluated at the point xf
(i+1). 

III.  NATURE OF THE NISM STEP 

In this section we prove that the NISM step, xf 
(i+1) = N(xc

*), is equivalent to a quasi-Newton step 

while the inverse mapping built during NISM optimization remains linear, i.e., while a 2-layer perceptron 

is enough to approximate the inverse mapping.  We also prove that the NISM step gradually departs from 

a quasi-Newton step as the amount of nonlinearity needed in the inverse mapping increases. 

A.  Jacobian of the Inverse Mapping 

From (5), the Jacobian JN of the inverse mapping N(xc) when a 2-layer perceptron is employed is 

given by 

o
N WJ =  (8) 

When a 3-layer perceptron is used, the Jacobian JN is obtained from (6) as 

ho
N WJWJ Φ=  (9) 

where JΦ ∈ ℜh×h is a diagonal matrix given by JΦ = diag(ϕ ' (sj)), with j = 1… h.  We use (8) and (9) to 

demonstrate the nature of the NISM step xf 
(i+1) = N(xc

*). 

B.  NISM Step vs. Quasi-Newton Step 

A general space mapping optimization problem can be formulated as solving the system of 
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nonlinear equations 

0=−= *)()( cff xxPxf  (10) 

where xc = P(xf) is the mapping function that makes the coarse model behave as the fine model, i.e., 

Rc(P(xf)) ≈ Rf (xf).  A Newton step for solving (10) is given by 

fJxx 1)()1( −+ −= P
i

f
i

f  (11) 

where JP ∈ ℜn×n is the Jacobian of the mapping function P(xf).  This can be stated in an equivalent 

manner by using the Jacobian JN ∈ ℜn×n of the inverse of the mapping xf = N(xc) (see appendix A) 

fJxx N
i

f
i

f −=+ )()1(  (12) 

 Approximating JN directly involves the same computational effort as approximating JP, but 

calculating the next step using (11) is computationally much more efficient than using (10), where a 

system of linear equations, possibly ill-conditioned, must be solved. 

If a 2-layer perceptron is being used, we substitute (8) in (12) to obtain 

)( *)()()1(
c

i
c

oi
f

i
f xxWxx −−=+  (13) 

which can be expressed using (5) as 

)()( *)()(*)1(
c

i
f

oi
fc

oi
f xNxbxxWx =+−−=+  (14) 

From (12) and (14) we conclude that while the inverse mapping built during NISM optimization 

remains linear, the NISM step is equivalent to a quasi-Newton step.  Notice that we do not use any of the 

classical updating formulae to calculate an approximation of the inverse of the Jacobian; this is done by 

simply evaluating the current neural network at the optimal coarse solution. 

If a 3-layer perceptron is being used, we substitute (9) in (12) to obtain 

)( *)()()1(
c

i
c

hoi
f

i
f xxWJWxx −−=+

Φ  (15) 

Adding and subtracting W 

oJΦ bh to (15)  

)()(*)1( )()( i
f

hi
c

hoh
c

hoi
f xbxWJWbxWJWx ++−+=+

ΦΦ  (16) 
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Substituting (6c) in (16)  

)()(*)1( )()( i
f

i
c

o
c

oi
f xxsJWxsJWx +−=+

ΦΦ  (17) 

Expanding the term JΦ s(xc) we obtain 

T
hhc ssss ])(')('[)( 11 ϕϕΦ …=xsJ . (18) 

Since we are using hyperbolic tangents as nonlinear activation functions, when a small amount of 

nonlinearity is present (e.g., sj < 0.1), ϕ(sj) = sj, and ϕ ' (sj)sj = sj = ϕ(sj), for j = 1,…, h, and using (6b) we 

express (18) as 

)()( cc xΦxsJ =Φ  (19) 

Substituting (19) in (17)  

)()(*)1( )()( i
f

i
c

o
c

oi
f xxΦWxΦWx +−=+  (20) 

Adding and subtracting bo to (20) and using (6a) we express (20) as 

)()()( *)()(*)1(
c

i
f

oi
c

oo
c

oi
f xNxbxΦWbxΦWx =+−−+=+  (21) 

In conclusion, the NISM step gradually departs from a quasi-Newton step as the amount of 

nonlinearity needed in the inverse mapping increases. 

IV.  EXAMPLES 

A.  Two-Section Impedance Transformer 

As an illustrative case, consider the classical test problem of designing a capacitively-loaded 10:1 

two-section impedance transformer [17].  The proposed “coarse” and “fine” models are shown in Fig. 2.  

The “coarse” model consists of ideal transmission lines, while the “fine” model consists of capacitively-

loaded ideal transmission lines, with C1 = C2 = C3 = 10pF.  The design specifications are |S11| ≤ 0.50 for 

frequencies between 0.5 GHz and 1.5 GHz. 

 The electrical lengths of the two transmission lines at 1.0 GHz are selected as design parameters.   

The characteristic impedances are kept fixed at the following values: Z1 = 2.23615 Ω, Z2 = 4.47230 Ω.  

Both models were implemented in OSA90/hope [18].  The optimal coarse solution is xc
* = [90  90]T 



 

 10

(degrees).  The coarse and fine model responses at xc
* are shown in Fig. 3.  We used only 10 frequency 

points from 0.2 to 1.8 GHz for the “fine” model.   

NISM optimization requires only 3 “fine” model evaluations to solve this problem.  The values of 

the fine model parameters at each iteration are shown in Table I.  A 2-layer perceptron was enough to 

approximate the inverse mapping at all NISM iterations.  The fine model response at the NISM solution is 

compared with the optimal coarse model response in Fig. 4.  The fine model minimax objective function 

values at each NISM iteration are shown in Fig. 5. 

Since both the coarse and “fine” models are actually very fast to evaluate, we applied direct 

minimax optimization to the “fine” model, obtaining xf
* = [79.2651  74.2322]T after 64 “fine” model 

evaluations.  In Fig. 6 we compare the fine model response at this solution with the optimal NISM 

response, where a remarkable match is observed. 

The same problem was solved in [19] using Trust Region Aggressive Space Mapping exploiting 

Surrogates.  It is noticed that this algorithm required 7 “fine” model evaluations. 

B.  Bandstop Microstrip Filter with Open Stubs 

We apply NISM optimization to a bandstop microstrip filter with quarter-wave resonant open 

stubs [11], whose physical structure is illustrated in Fig. 7.  L1, L2 are the open stub lengths and W1, W2 the 

corresponding widths.  An alumina substrate with thickness H = 25 mil, width W0 = 25 mil and dielectric 

constant εr = 9.4 is used for a 50 Ω feeding line. 

The specifications are |S21| ≤ 0.01 in the stopband and |S21| ≥ 0.9 in the passband, where the 

stopband lies between 9.3 GHz and 10.7 GHz, and the passband includes frequencies below 8 GHz and 

above 12 GHz.  The design parameters are xf = [W1 W2 L0 L1 L2] T. 

Sonnet’s em [20] driven by Empipe [18] was employed as the fine model, using a high-

resolution grid with a 1mil×1mil cell size.  The coarse model, illustrated in Fig. 8, consists of simple ideal 

transmission lines for modeling each microstrip section and classical formulas [21] to calculate the 

characteristic impedance and the effective dielectric constant of each transmission line.  It is seen that Lc2 
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= L2 + W0/2, Lc1 = L1 + W0/2, and Lc0 = L0 + W1/2 + W2/2.  We use OSA90/hope [18] built-in 

transmission line elements TRL. 

The following optimal coarse model solution is found for L0, L1, and L2 of quarter-wave lengths at 

10 GHz: xc
* = [6.0  9.0  106.4  110.1  108.8] T (mils), as in [11].  The coarse and fine model responses at 

the optimal coarse solution are shown in Fig. 9. 

NISM optimization requires only 4 fine model evaluations to solve this problem.  The sequence 

of iterates is shown in Table II (all the points are on the grid, to avoid interpolation).  A 2-layer perceptron 

was enough to approximate the inverse mapping at all NISM iterations.  The fine model response at the 

NISM solution is compared with the optimal coarse model response in Fig. 10.  The fine model minimax 

objective function values at each NISM iteration are shown in Fig. 11. 

The same problem was solved in [11] using Neural Space Mapping (NSM) optimization.  NSM 

required 13 fine model evaluations to find the solution whose response is shown in Fig. 12.  It is 

remarkable that NISM optimization not only requires fewer fine model evaluations, but also arrives at a 

solution closer to the solution of the original optimization problem. 

C.  High Temperature Superconducting Microstrip Filter   

We apply NISM optimization to a high-temperature superconducting (HTS) quarter-wave parallel 

coupled-line microstrip filter, and contrast our results with those obtained by using NSM optimization on 

the same problem [10-11].  The physical structure of the HTS filter is illustrated in Fig. 13. 

L1, L2 and L3 are the lengths of the parallel coupled-line sections and S1, S2 and S3 are the gaps 

between the sections.  The width W is the same for all the sections as well as for the input and output 

lines, of length L0.  A lanthanum aluminate substrate with thickness H and dielectric constant εr is used. 

The specifications are |S21| ≥ 0.95 in the passband and |S21| ≤ 0.05 in the stopband, where the 

stopband includes frequencies below 3.967 GHz and above 4.099 GHz, and the passband lies in the range 

[4.008GHz, 4.058GHz].  The design parameters are xf = [L1 L2 L3 S1 S2 S3] T.  We take L0 = 50 mil, H = 20 

mil, W = 7 mil, εr = 23.425, loss tangent = 3×10−5; the metalization is considered lossless. 
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Sonnet’s em [20] driven by Empipe [18] was employed as the fine model, using a high-

resolution grid with a 1mil×1mil cell size.  OSA90/hope [18] built-in linear elements MSL (microstrip 

line), MSCL (two-conductor symmetrical coupled microstrip lines) and OPEN (open circuit) connected 

by circuit theory over the same MSUB (microstrip substrate definition) are taken as the “coarse” model, 

whose schematic representation is illustrated in Fig. 14. 

The following optimal coarse model solution is used, as in [10,11]: xc
* = [188.33  197.98  188.58 

21.97  99.12  111.67] T (in mils).  The coarse and fine model responses at the optimal coarse solution are 

shown in Fig. 15.  Only 14 frequency points per frequency sweep are used for the fine model. 

After only 3 fine model simulations the optimal NISM solution was found.  The sequence of fine 

model parameters at each NISM iteration is shown in Table III (all the points are on the grid, to avoid 

interpolation).  A 2-layer perceptron was enough to approximate the inverse mapping at all NISM 

iterations.  Fig. 16a compares the optimal coarse response with the fine model response at the NISM 

solution using a fine frequency sweep.  A more detailed comparison in the passband is shown in Fig. 16b.  

The fine model minimax objective function values at each NISM iterations for this problem are shown in 

Fig. 17. 

The same problem was solved in [19] using Trust Region Aggressive Space Mapping exploiting 

Surrogates.  It is noticed that this algorithm required 8 fine model evaluations; the corresponding fine 

model minimax objective function values are shown in Fig. 18. 

Fig. 19 shows the results obtained by applying NSM optimization [11] to the same problem, 

where the optimal NSM solution was found after 14 fine model evaluations. 

Once again, it is seen that NISM optimization is not only more efficient in terms of the required 

fine model evaluations, but also yields a solution closer to the optimal solution of the original 

optimization problem (compare Fig. 16b with Fig. 19, and Fig. 17 with Fig. 18). 

For all the previous examples, parameter extraction was successfully performed in just one 

attempt at every NISM iteration.  That was not the case for the HTS filter, where the parameter extraction 
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objective function has many poor local minima around xc
*.  Our proposed algorithm for parameter 

extraction overcame this problem.  We applied NISM optimization to the HTS filter 5 times in order to 

test the statistical parameter extraction results.  In Table IV we show the number of attempts needed for 

successful parameter extraction at each NISM iteration for the 5 optimizations.  Exactly the same 

sequence of points illustrated in Table III was predicted by each of the 5 optimizations. 

V.  CONCLUSIONS 

We propose Neural Inverse Space Mapping (NISM) optimization for EM-based design of 

microwave structures.  The inverse of the mapping is exploited for the first time in a space mapping 

algorithm.  NISM optimization does not require up-front EM simulations, multipoint parameter extraction 

or frequency mapping.  A simple statistical procedure overcomes the existence of poor local minima 

during parameter extraction.  A neural network whose generalization performance is controlled through a 

network growing strategy approximates the inverse of the mapping at each iteration.  The NISM step 

simply evaluates the current neural network at the optimal coarse solution.  We prove that this step is 

equivalent to a quasi-Newton step while the inverse mapping remains essentially linear, and gradually 

departs from a Newton step as the amount of nonlinearity in the inverse mapping increases.  Our new 

algorithm exhibits superior performance to Neural Space Mapping (NSM) optimization and Trust Region 

Aggressive Space Mapping exploiting Surrogates. 

ACKNOWLEDGEMENT 

The authors thank Dr. J.C. Rautio, President, Sonnet Software, Inc., Liverpool, NY, for making 

em available. 

REFERENCES 

 
[1]  P. Burrascano and M. Mongiardo, “A review of artificial neural networks applications in 

microwave CAD,” Int. J. RF and Microwave CAE, Special Issue on Applications of ANN to RF 
and Microwave Design, vol. 9, 1999, pp. 158-174. 

 
[2]  J.W. Bandler, M.A. Ismail, J.E. Rayas-Sánchez and Q.J. Zhang, “Neuromodeling of microwave 

circuits exploiting space mapping technology,” IEEE Trans. Microwave Theory Tech., vol. 47, 
1999, pp. 2417-2427. 

 



 

 14

 
[3]  T.S. Horng, C.C. Wang and N.G. Alexopoulos, “Microstrip circuit design using neural 

networks,” IEEE MTT-S Int. Microwave Symp. Dig. (Atlanta, GA), 1993, pp. 413-416. 
 
[4]  A.H. Zaabab, Q.J. Zhang and M.S. Nakhla, “A neural network modeling approach to circuit 

optimization and statistical design,” IEEE Trans. Microwave Theory Tech., vol. 43, 1995, pp. 
1349-1358. 

 
[5]  A. Veluswami, M.S. Nakhla and Q.J. Zhang, “The application of neural networks to EM-based 

simulation and optimization of interconnects in high-speed VLSI circuits,” IEEE Trans. 
Microwave Theory Tech., vol. 45, 1997, pp. 712-723. 

 
[6]  P.M. Watson and K.C. Gupta, “Design and optimization of CPW circuits using EM-ANN models 

for CPW components,” IEEE Trans. Microwave Theory Tech., vol. 45, 1997, pp. 2515-2523. 
 
[7] P. Burrascano, M. Dionigi, C. Fancelli and M. Mongiardo, “A neural network model for CAD 

and optimization of microwave filters,” IEEE MTT-S Int. Microwave Symp. Dig. (Baltimore, 
MD), 1998, pp. 13-16. 

 
[8] P.M. Watson, G.L. Creech and K.C. Gupta, “Knowledge based EM-ANN models for the design 

of wide bandwidth CPW patch/slot antennas,” IEEE AP-S Int. Symp. Digest (Orlando, FL), 1999, 
pp. 2588-2591. 

 
[9]  C. Cho and K.C. Gupta, “EM-ANN modeling of overlapping open-ends in multilayer lines for 

design of bandpass filters,” IEEE AP-S Int. Symp. Digest (Orlando, FL), 1999, pp. 2592-2595. 
 
[10] M.H. Bakr, J.W. Bandler, M.A. Ismail, J.E. Rayas-Sánchez and Q.J. Zhang, “Neural space 

mapping optimization of EM microwave structures,” IEEE MTT-S Int. Microwave Symp. Digest 
(Boston, MA), 2000, pp. 879-882. 

 
[11]  M.H. Bakr, J.W. Bandler, M.A. Ismail, J.E. Rayas-Sánchez and Q.J. Zhang, “Neural space 

mapping optimization for EM-based design,” IEEE Trans. Microwave Theory Tech., vol. 48, 
2000, pp. 2307-2315. 

 
[12]  J.W. Bandler, M.A. Ismail, J.E. Rayas-Sánchez and Q.J. Zhang, “Neural inverse space mapping 

EM-optimization,” IEEE MTT-S Int. Microwave Symp. Digest (Phoenix, AZ), 2001. 
 
[13]  Matlab Optimization Toolbox, Version 2, The MathWorks, Inc., 3 Apple Hill Drive, Natick 

MA 01760-2098, 1999. 
 
[14]  J.W. Bandler, R.M. Biernacki, S.H. Chen and D. Omeragić, “Space mapping optimization of 

waveguide filters using finite element and mode-matching electromagnetic simulators,” Int. J. RF 
and Microwave CAE, vol. 9, 1999, pp. 54-70. 

 
[15]  Matlab Neural Network Toolbox, Version 3, The MathWorks, Inc., 3 Apple Hill Drive, Natick 

MA 01760-2098, 1998. 
 
[16]  S. Haykin, Neural Networks: A Comprehensive Foundation.  New Jersey, MA: Prentice Hall, 

1999. 
 



 

 15

 
[17] J.W. Bandler, “Optimization methods for computer-aided design,” IEEE Trans. Microwave 

Theory Tech., vol. 17, 1969, pp. 533-552. 
 
[18]  OSA90/hope and Empipe, Version 4.0, formerly Optimization Systems Associates Inc., P.O. 

Box 8083, Dundas, ON, Canada, L9H 5E7, 1997, now Agilent Technologies, 1400 
Fountaingrove Parkway, Santa Rosa, CA 95403-1799. 

 
[19]  M.H. Bakr, J.W. Bandler, K. Madsen, J.E. Rayas-Sánchez and J. Søndergaard, “Space mapping 

optimization of microwave circuits exploiting surrogate models,” IEEE Trans. Microwave Theory 
Tech., vol. 48, 2000, pp. 2297-2306. 

 
[20] em Version 4.0b, Sonnet Software, Inc., 1020 Seventh North Street, Suite 210, Liverpool, NY 

13088, 1997. 
 
[21]  M. Pozar, Microwave Engineering. Amherst, MA: John Wiley and Sons, 1998, pp. 162.  



 

 16

Appendix A 

JN = JP
−1, Proof 

Let xc = P(xf), with P : ℜn → ℜn, and xf  = N(xc) its inverse function.  Using P(xf), we can write 

the system of equations 
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(A-3) 
 
 
 
 
 
(A-4) 

Substituting (A-2)-(A-4) in (A-1) 

fPc dxJdx =  (A-5) 
 
 

Similarly, using N(xc) we obtain 

cNf dxJdx =  (A-6) 
 
 

where  
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(A-7) 

 Comparing (A-5) and (A-6) we conclude that JN = JP
−1.  Notice that when xf  and xc have different 

dimensionality, JN is the pseudoinverse of JP. 
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TABLE I 
FINE MODEL PARAMETERS FOR THE 

TWO-SECTION IMPEDANCE TRANSFORMER 
AT EACH NISM ITERATION 

 
  

i xf
(i) T 

  
  

1 [90   90] 
2 [84.1990   83.0317] 
3 [79.3993   73.7446] 

  

 
 

TABLE II 
FINE MODEL PARAMETERS FOR THE 

BANDSTOP FILTER WITH OPEN STUBS 
AT EACH NISM ITERATION 

 
  

i xf
(i) T 

  
  

1 [6  9  106  110  109] 
2 [7  11  103  112  111] 
3 [9  20  95  115  115] 
4 [9  19  95  115  114] 

  

 
 

TABLE III 
FINE MODEL PARAMETERS FOR THE 

HTS MICROSTRIP FILTER 
AT EACH NISM ITERATION 

 
  

i xf
(i) T 

  
  

1 [188  198  189  22  99  112] 
2 [187  196  187  21  84    92] 
3 [186  194  185  20  80    89] 

  

 
 

TABLE IV 
PARAMETER EXTRACTION RESULTS FOR 5 
NISM OPTIMIZATIONS FOR THE HTS FILTER 

 
  

i number of attempts needed for successfull PE 
      

1 12 9 3 10 8 
2 3 3 6 7 3 
3 1 1 1 1 1 
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Calculate the fine responses
Rfs(xf 

(i))

PARAMETER EXTRACTION:
Find xc

(i) such that

Rcs(xc
(i)) ≈ Rfs(xf 

(i))

COARSE OPTIMIZATION: find the
optimal coarse model solution xc

* that
generates the desired response

xf 
(i+1) = N(xc

*)

Choose the coarse optimal solution as a
starting point for the fine model

xf
(i) =  xc

*

Start

INVERSE
NEUROMAPPING:

Find the simplest neural
network N  such that

xf 
(l) ≈ N (xc

(l))

l = 1,..., i

i = i + 1

xf
(i) ≈ xf

(i+1)

no

yes

End

i = 1

 
 

Fig. 1.  Flow diagram for Neural Inverse Space Mapping (NISM) optimization. 
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Fig. 2.  Two-section impedance transformer test problem: (a) “coarse” model, (b) “fine” model. 
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Fig. 3.  Coarse (−) and fine (o) model responses at xc
* for the two-section impedance transformer. 
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Fig. 4.  Optimal coarse model response (−) and fine model response at the NISM  
       solution (o) for the two-section impedance transformer. 
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Fig. 5.  Fine model minimax objective function values for the two-section  
impedance transformer at each NISM iteration. 
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Fig. 6.  Fine model response at the NISM solution (o) and at the direct minimax 
       solution (−) for the two-section impedance transformer. 
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Fig. 7.  Bandstop microstrip filter with quarter-wave resonant open stubs. 
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Fig. 8.  Coarse model for the bandstop microstrip filter with open stubs. 
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Fig. 9.  Coarse and fine model responses at the optimal coarse solution for 
            the bandstop filter with open stubs: OSA90/hope (−) and em (o). 
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Fig. 10.  Coarse model response (−) at the optimal coarse solution and fine model response (o)  

           at the NISM solution for the bandstop microstrip filter with open stubs. 
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Fig. 11.  Fine model minimax objective function values for the bandstop  
  microstrip filter at each NISM iteration. 
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Fig. 12.  Coarse model response (−) at the optimal coarse solution and fine model response (o)  

           at the NSM solution, obtained in [2], for the bandstop microstrip filter with open stubs. 
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Fig. 13.  HTS quarter-wave parallel coupled-line microstrip filter. 
 
 
 
 

 
 

Fig. 14.  Schematic representation of the coarse model for the HTS filter. 
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Fig. 15.  Coarse and fine model responses at the optimal coarse  
          solution for the HTS filter: OSA90/hope (−) and em (o). 

 



 

 27

 

3.95 4 4.05 4.1 4.15
0

0.2

0.4

0.6

0.8

1

frequency (GHz)

|S
21

|

 
(a) 

 

3.98 4 4.02 4.04 4.06 4.08
0.8

0.85

0.9

0.95

1

frequency (GHz)

|S
21

|

 
(b) 

 
Fig. 16.  Coarse model response at xc

* (−) and fine model response at xf
NISM (o) for the 

     HTS filter: (a) in the complete range of interest, (b) in the passband. 
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Fig. 17.  Fine model minimax objective function values for the HTS  
  microstrip filter at each NISM iteration. 
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Fig. 18.  Fine model minimax objective function values for the HTS  

 microstrip filter at each iteration using Trust Region Aggressive  
 Space Mapping exploiting Surrogates, as obtained in [19]. 
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Fig. 19.   Coarse model response at xc
* (−) and fine mode response at xf

NSM (o), 
           obtained in [2], in the passband. 
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