
1

    EXPANDED SPACE MAPPING EM BASED DESIGN FRAMEWORK
EXPLOITING PREASSIGNED PARAMETERS

John W. Bandler, Fellow, IEEE, Mostafa A. Ismail, Student Member, IEEE and
José E. Rayas-Sánchez, Senior Member, IEEE

Keywords Space mapping, preassigned parameters, design automation, EM optimization,
microwave circuits, microstrip filters, optimization methods

Abstract We present a novel design framework for microwave circuits.  We calibrate coarse models

(circuit based models) to align with fine models (full wave EM simulations) by allowing some

preassigned parameters (which are not used in optimization) to change in some components of the coarse

model.  We refer to those components as �designated� and we present a method based on sensitivity

analysis to identify them.  Our Expanded Space Mapping Design Framework (ESMDF) algorithm

calibrates the coarse model iteratively by extracting the preassigned parameters of the designated

components.  It establishes a mapping from optimizable to preassigned parameters.  This mapping is

sparse and is established with few fine model simulations.  The algorithm updates the mapping and

terminates if relevant stopping criteria are satisfied.  Software implementation as well as interfacing with

commercial EM simulators are addressed.  We illustrate our approach through three microstrip design

examples.

I. INTRODUCTION

The concept of calibrating coarse models (computationally fast circuit based models) to align
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with fine models (typically CPU intensive full wave EM simulations) in microwave circuit design has

been exploited by several authors [1 , 2, 3, 4].  In [1, 2, 3], this calibration is performed through a

mapping between the optimizable parameters of the coarse model and those of the fine model such that

the corresponding responses match.  This mapping is iteratively updated.  In [4], the coarse model is

calibrated with the fine model by adding circuit components to nonadjacent individual coarse model

elements.  The values of these components are updated iteratively.

Here, we expand the original space mapping technique [1].  We calibrate the coarse model by

allowing �preassigned� parameters to change in some coarse model components.  Examples of

preassigned parameters are dielectric constant and substrate height in microstrip structures.  We assume

that the coarse model consists of several components such as transmission lines, junctions, etc.  We

decompose the coarse model into two sets of components.  We allow the preassigned parameters to

change in the first set and keep them intact in the second set.  In Section III we present a method based on

sensitivity analysis to perform this decomposition.

For example, the coarse model of the three-section microstrip transformer in Fig. 1(b) consists of

five components: three microstrip lines and two step junctions.  The transmission line lengths and widths

(Fig. 1(a)) are the optimizable parameters.  The preassigned parameters are the substrate height H and the

dielectric constant εr.  We choose the three transmission lines in Fig. 1(b) (components 1,3,5) as

�designated� components (we will see how in Section III).  The coarse model is calibrated to align with

the fine model (in this case full wave EM simulations by Sonnet�s em [5]) by tuning H and εr of each

designated component (transmission line).  The dielectric constant and the substrate height of the other

components (the two step junctions in Fig. 1(b)) are kept intact.  Note that we do not change the

preassigned parameters in the fine model.

The ESMDF algorithm calibrates the coarse model by extracting the preassigned parameters such

that corresponding responses match.  It establishes a mapping from optimizable to preassigned

parameters.  The resulting mapped coarse model (the coarse model with the mapped preassigned
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parameters) is then optimized subject to a trust region size.  The algorithm terminates if certain relevant

stopping criteria are satisfied.  Otherwise it starts a new iteration and recalibrates the coarse model by

extracting the preassigned parameters and updating the mapping.  The trust region size is updated [6, 7, 8]

according to the match between the fine and mapped coarse model.

II. BASIC CONCEPTS AND NOTATION

Preassigned Parameter Mapping

Consider a microwave circuit represented by a fine model and a coarse model.  We decompose

the coarse model into two sets of components: a Set A of �designated� components and Set B.  See Fig. 2.

In Set A, we allow preassigned parameters to change throughout the design process.  In Set B, we keep

the preassigned parameters intact.  The vector 0
0

nℜ∈x  represents the original values of the preassigned

parameters.  Assume that the total number of coarse model components is N, the number of components

in the designated Set A is m≤ N and the set I is defined by

},,2,1{ NI �==== (1)

Let j1, j2, …, jm ∈  I represent the indices of the components in Set A.  The vector of corresponding

preassigned parameters

0
21

][ mnT
jjj m

ℜ∈= ΤΤΤ xxxx � (2)

where 0n
ji ℜ∈x , i=1, 2, �, m is the ith designated component.  The vector n

f ℜ∈x  represents the

original optimization variables.

We assume that we can establish a mapping from some elements of xf to x such that the coarse

model aligns with the fine model.  This mapping is given by

0:)( mnn
r

r ℜℜ= �xPx (3)

TT
s

T
rf ][ xxx ==== (4)

Decomposition of xf into xr and xs (introduced and justified by Bandler et al. [2] as �partial space

mapping�) allows a reduction of the mapping P.  We approximate (3) and consider the difference form
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rr xBx ∆=∆ (5)

where rnmn
r

 x )( 0ℜ∈B  is a matrix to be determined.

Responses

The vector FL
ff Ω ℜ∈),(xR  represents a complete set of basic responses of the fine model (such

as the real and imaginary parts of the S-parameters) at xf  and over a set of frequencies Ω

T
Ff

T
ff

T
ff

T
fff ωωωΩ )],(),(),([),( 21 xRxRxRxR �= (6a)

},,,{ 21 FωωωΩ �= (6b)

The number of those responses is L and the cardinality of Ω  is F.  FL
fc Ω ℜ∈),,( xxR  is the

corresponding set of responses for the coarse model at fx , for the preassigned x and over Ω.  The vectors

),,( Ωffs xR FM
fcs Ω ℜ∈),,( xxR  represent specific responses (such as  S11 ,  S21 , etc.) of the fine and

coarse model, respectively.  The design specifications and hence the objective functions are given in their

terms.  In this work, we use two sets of frequencies.  The first set pΩ  is of cardinality pF .  It is used in

the preassigned parameter extraction process.  The second set sΩ  is of cardinality sF .  It is used for

optimizing the mapped coarse model.  Typically, we choose ps FF >  since we wish to simulate the fine

model over the least possible number of frequencies.

Illustrative Example

Consider the microstrip transformer in Fig.1.  The source and load impedances are 50 and 150 Ω,

respectively.  The design specifications are

 dB,2011 −≤S for 5 GHz ≤ ω ≤ 15 GHz

The fine model is analyzed by Sonnet�s em [5].  The coarse model in Fig. 1(b) is analyzed by

OSA90/hope [13].  The optimization variables are the widths and the lengths of the microstrip

transmission lines in Fig. 1(a).  That is,
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T
f LLLWWW ][ 321321=x

The preassigned parameters are the dielectric constant εr = 9.7 and the substrate height H = 25 mil.

Therefore, the vector x0=[25 mil 9.7]T.  The coarse model consists of five components (N=5) as shown in

Fig. 1(b).  The algorithm applies the coarse model decomposition technique in Section III and chooses the

components 1, 3 and 5 as designated.  Thus Set A consists of the three transmission lines in Fig. 1(b) and

Set B consists of components 2 and 4 (the step junctions).  The vector of preassigned parameters (in Set

A) is

TΤΤΤ ][ 531 xxxx =

where T
irii Hε ][=x , i=1, 3, 5.  The vector xr in (3) is given by

T
r WWW ][ 321=x

The matrix Br is chosen to have the sparsity structure
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where x denotes a nonzero entry.  This structure reflects an association between preassigned parameters

and the design parameters of the corresponding component.  For example, the preassigned parameters of

the first, second and third designated components are functions only of W1, W2, and W3, respectively.

The response vectors csfs RR ,  contain  S11 .  The vectors cf RR ,  contain the real and

imaginary parts of S11.  Set sΩ  contains 21 evenly spaced frequencies while pΩ  contains 11 evenly

spaced frequencies from 5 GHz to 15 GHz.

III. COARSE MODEL DECOMPOSITION

We present a method based on sensitivity analysis to decompose the coarse model components

into two sets.  Set A contains those for which the response is very sensitive to small changes in
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preassigned parameter values.  Set B contains those for which the response is insensitive to changes in

preassigned parameters.  The method is summarized in the following steps.

Step 1 For all i ∈  I in (1) evaluate

F

Τ

i

Τ
cs

iS )( D
x
R
∂
∂= (7)

where Si represents a measure of the sensitivity of the coarse model response to preassigned

parameters of the ith component, the matrix D is for scaling and F  denotes Frobenius

norm.

Comment The Jacobian in (7) is evaluated by perturbation at Iii ∈= ,0xx .  The matrix D is diagonal.

It consists of the elements of x0.  For the microstrip transformer in Fig. 1(b), (see Section II),

D = diag {25 mil, 9.7}.

Step 2 Evaluate

Ii
S

SS
j

Ij

i
i ∈∈∈∈====

∈∈∈∈

,
}{max

� (8)

Comment For the example in Section II, the values of iS�  are given in Table I, where we notice that csR

is most sensitive to the first transmission line.

Step 3 Put the ith component in Set A if βSi ≥�  otherwise put it in Set B.

Comment The scalar β is a small positive number less than 1.  In our examples β = 0.2.  For the

microstrip transformer, we place components 1, 3 and 5 in Set A (see Table I) and

components 2 and 4 in Set B.

IV. THE ESMDF ALGORITHM

The ESMDF algorithm starts by decomposing the coarse model into two sets of components as

shown in Section III.  Then it obtains the optimal solution of the coarse model.  If the fine model response

at that solution satisfies the specifications and (or) is very close to the optimal coarse model response (the

coarse model is already very good) the algorithm terminates.  Otherwise, the algorithm iteratively
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calibrates the coarse model by extracting the preassigned parameters at the optimal coarse model solution

and updating the matrix Br.  At each iteration, the algorithm obtains the optimal solution of the mapped

coarse model subject to a certain trust region [6, 8].  This solution is accepted if it results in a reduction in

the fine model objective function.  The trust region size is adaptively updated according to the relative

improvement of the fine model objective function to that of the coarse model.  The algorithm terminates

if any one of some stopping criteria (to be discussed later) is satisfied.  It performs four main tasks:

mapped coarse model optimization, extraction of preassigned parameters, checking some stopping criteria

and updating the mapping parameters and the trust region size.

Mapped Coarse Model Optimization

A trust region methodology controls the optimization of the mapped coarse model to insure

improvement in the fine model objective function.  Let h denote the prospective step ∆xf and hr denote

the corresponding step ∆xr.  At the ith iteration the algorithm obtains the step )(ih  by solving the

optimization problem

ii

r
i

r
ii

fcs
i

δ

U

≤

++=

hΛ

hBxhxRh
h

tosubject

)),((minarg )()()()(

(9)

where U is a suitable objective function, iδ  is the trust region radius and the matrix iΛ  is for scaling [7].

We set iΛ  as a diagonal matrix whose elements are the reciprocal of the elements of )(i
fx .  Therefore, the

trust region radius iδ  represents the maximum allowable relative change in the design variables at the ith

iteration.  The norm used in (9) is the ∞� norm.  The algorithm decides whether to accept the prospective

step )(ih :

��

�
�
� <++

=+

otherwise

)),(()),((if
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p
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ffsp
ii

ffs
ii

fi
f

ΩUΩU

x

xRhxRhx
x (10)

The ith iteration is successful if )(ih  results in an improvement in the fine model objective function.

The algorithm updates the trust region radius according to the criteria in [7,8]:
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1. If the decrease in the fine model objective function is the same as or better than that of the mapped

coarse model we enlarge the trust region.

2. However, if the fine model objective function has increased or if it has decreased but not by as much

as predicted by the mapped coarse model we shrink the trust region.

3. Otherwise we leave the trust region unchanged.

Mathematically, we evaluate the relative reduction in the fine model objective function with respect to the

corresponding reduction in the mapped coarse model objective function

)),,(()),,((
)),(()),((

)()()(1)()()(

1)()(

p
i

r
i

r
ii

fcsp
ii

fcs

p
i

ffsp
i

ffs

ΩUΩU
ΩUΩU

r
hBxxRxxR

xRxR
+−

−
= +

+

(11)

Then we update the trust region radius as follows

�
�

�
�

�

<
>

=+

otherwise
if3/
if2

2

1

1

i

i

i

i

δ
rrδ
rrδ

δ (12)

where r1 and r2 take the values 0.75 and 0.25 [8].

Stopping Criteria

At the ith iteration, the algorithm simulates the fine model at the optimal mapped coarse model

solution and stops if one of the following stopping criteria is satisfied.

1. A predefined maximum number of iterations maxi  is reached.  This puts a limit on the number of fine

model evaluations the designer can afford.

2. The algorithm reaches a solution that just satisfies the specifications.

3. The mapped coarse model response is very close to the fine model response

1
)()1()1-()()( ),,(),( εΩΩ p

ii
fsp

i
fsf ≤+− − i

r
i

rc hBxxRxR (13)

This criterion indicates that the mapped coarse model is doing an excellent job in predicting the

improvement in the fine model within certain accuracy.

4. The solutions obtained in two successive successful iterations are very close [3]
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2
1)-()( εi

f
i

f ≤−
∞

xx (14)

5. The radius of the trust region is very small

minδδi < (15)

where minδ  is the smallest allowable trust region radius.

If none of the criteria is satisfied and the solution obtained in (10) is successful the algorithm

proceeds to extract the preassigned parameters at the optimal coarse model solution, i.e., the next

iteration.

Extraction of Preassigned Parameters

At the ith iteration, if the algorithm accepts the prospective step )(ih  (10) and the stopping criteria

are not satisfied, it extracts the vector of the preassigned parameters )1( +ix  corresponding to )1( +i
fx

),,(),(minarg )1()1()1(
p

i
fp

i
ff

i ΩΩ xxRxRx cx

+++ −= (16)

where the norm used in (16) is the Huber norm [9].  The optimization problem (16) may get trapped in a

poor local minimum if the coarse and fine model responses are severely misaligned.  Possible ways to

overcome this is to use frequency mapping [10] or statistical parameter extraction [11].  Here, we present

another technique.  Instead of solving (16) directly we try to roughly align the responses first.  We do that

by minimizing the difference between the center frequency and the bandwidth of the coarse and the fine

model responses

),()(),()(minarg )1()1()1()1( xxxxxxx
x

++++ −+−= i
fc

i
ff

i
fc

i
ff σσµµ (17)

where { fµ , cµ } and { fσ , cσ } are estimates of the center frequencies and bandwidths, respectively, for

the fine and coarse model responses (see Appendix A).  We use this solution as a starting point to solve

(16).  If this procedure fails to produce a good match the algorithm uses the statistical parameter

extraction approach in [11].  That is it tries to solve (16) from different random starting points until it

obtains a good match.  From our experience we notice that we need to perform this procedure only in the

first iteration.  For later iterations it is enough to use the previous solution as a starting point to solve (16).
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Updating the Mapping Parameters

After extracting the preassigned parameters at the ith iteration the algorithm updates Br in (5).  In

the early iterations we have an underdetermined system.  We choose the minimum norm solution to

render the preassigned parameters close to their original values.  That is, we choose Br close to 0.  At the

ith iteration we have

][][ )()2()1()((2)(1) i
rrrr

i xxxBxxx ∆∆∆=∆∆∆ �� (18)

where

ijjjj ,...,2,1,1)()()( ∈−=∆ −xxx (19a)

ijj
r

j
r

j
r ...,,2,1,1)()()( ∈−=∆ −xxx (19b)

The vector (0)x  contains the original values of the preassigned parameters.  When solving (18) for Br

sparsity should be considered.  Let pℜ∈b  contain the nonezero elements of Br.  By rearranging (18) we

can write the linear system as

bXy r= (20)

where in mTTiTT  )((2)(1) 0])()()[( ℜ∈∆∆∆= xxxy �  and pinm
r

x0ℜ∈X  is a sparse matrix whose nonezero

elements are the elements of )()2()1( ,, i
rrr xxx ∆∆∆ � .  The structure of the matrix rX  depends on the

sparsity of Br.  The solution of (20) is given by

yXb += r (21)

where +
rX  is the pseudoinverse of rX .  A Matlab [12] function is written to construct the matrix rX  and

the Matlab function pinv is used to evaluate +
rX .  The advantage of using the pseudoinverse is that it

gives us the minimum norm solution for underdetermined systems.

Summary of the ESMDF Algorithm

Given 0δ (the initial trust region radius), minδ , imax, ε1, ε2 the algorithm performs the following

steps.
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Step 1 Decompose the coarse model components into sets A and B as mentioned in Section III.

Initialize i = 0, Br=0.

Step 2 Optimize the coarse model.  Designate the optimal solution (0)
fx .

Step 3 Simulate the fine model at (0)
fx .  Terminate if a stopping criterion is satisfied.

Step 4 Extract the preassigned parameters )(ix  by solving (16).  Update Br using (21).

Step 5 Evaluate the prospective step )(ih  by optimizing the mapped coarse model (9).

Mark i as a successful iteration if )),(()),(( )()()(
p

i
ffsp

ii
ffs ΩUΩU xRhxR <+ .

Set 1)( +i
fx  according to (10).

Comment  When i=0 we disable the trust region, hence 0δ  can be small.  For example, 0.05 is used in our

design examples.

Step 6 Evaluate r in (11).  Update δ from (12).  Increment i.

Step 7 If a stopping criterion is satisfied terminate.

Step 8 If the ith iteration is successful go to Step 4, otherwise go to Step 5.

V. SOFTWARE IMPLEMENTATION

The ESMDF algorithm is currently implemented in Matlab [12].  The user writes a text input

file which includes coarse and fine model names and directories, frequency ranges, design specifications,

starting point for the optimization variables and other parameters such as the maximum allowable number

of fine model simulations and the initial trust region radius.  The program outputs the solution process,

including plots of the mapped coarse and fine model responses, the objective function, parameter values

and Br.

The current implementation drives Sonnet�s em [5] through OSA90/hope [13].  It uses the

OSA90/hope optimizers (not Matlab).  Driving other EM simulators (with parameterization capability

[14]) automatically from within Matlab is not trivial.  We have developed a Windows based Microsoft

visual C++ program (Fig. 3).  Matlab runs �Simulator_Driver.exe� which opens �Input.dat�, calls the EM
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simulator, opens the proper windows and fills in the necessary information.  Simulator_Driver.exe

commands the EM simulator to export S-parameters to �Simulator_Output.dat�, which are reformatted to

�Output.dat�.  We have created Momentum_Driver to drive Momentum [15].

VI. EXAMPLES

The ESMDF algorithm has been tested with δ0 = 0.05, δmin = 0.005, imax = 10, and ε1 = 0.005 on

an IBM Aptiva (AMD Athlon, 650 MHz, 384 MB).

Three-Section Microstrip Transformer

This example (Section II) requires 2 iterations (three fine model simulations) to reach the optimal

solution in Table II in 17 min.  The fine model objective function is shown in Fig. 4.  The stopping

criterion (13) terminates the algorithm, signifying excellent agreement between the mapped coarse model

and fine model.  The initial and final solutions are shown in Figs. 5(a) and (b).  Table III shows

corresponding preassigned parameters.

The final mapped coarse model can be utilized in yield estimation.  We assume a uniform

distribution with 0.25 mil tolerance on all six geometrical parameters.  With 250 outcomes the estimated

yield is 78 % compared with 79% using the fine model directly.

HTS Filter (Fig. 6)

The design variables of the HTS bandpass filter (Fig. 6(a)) [16] are the lengths of the coupled

lines and the separation between them

T
r

T
f SSSLLLSSS ][,][ 321321321 == xx

The substrate used is lanthanum aluminate with εr= 23.425, H= 20 mil and substrate dielectric loss

tangent of 0.00003.  The length of the input and output lines is L0=50 mil and the lines width W= 7 mil.

We choose εr and H as preassigned parameters, thus x0=[20 mil 23.425]T.  The design specifications are

 05.021 ≤S  for ω ≥ 4.099 GHz and for ω ≤ 3.967 GHz

 95.021 ≥S  for 4.008 GHz ≤ ω ≤ 4.058 GHz

This corresponds to a 1.25% bandwidth.  The coarse model consists of empirical models for single and
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coupled microstrip transmission lines (see Fig. (6b)).  All open circuits are considered ideally open.

Table IV shows the sensitivity measures for the coarse model responses w.r.t. the preassigned parameters.

Fig. 7 depicts significant changes in the coarse model response due to +2% perturbation in both

preassigned parameters of each component.  The preassigned parameter vector is TΤΤT ][ 321 xxxx = ,

where T
irii H ][ε====x  for i=1, 2, 3.  Here
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The fine model is parameterized by Empipe [17] and is simulated by Sonnet�s em [5].  The cell

size used is 0.5 mil by 1 mil.  All parameter values are rounded to the nearest grid point.  sΩ  contains 25

frequencies while pΩ  contains 17.  The coarse and fine model responses at the initial solution are shown

in Fig. 8, where we notice severe misalignment.  The remedy suggested in Section IV managed to get a

good solution of (16).  The algorithm needs 4 iterations (5 fine model simulations).  The time taken is 6.2

hr (one fine model simulation takes 1.2 hr).  The fine model objective function is shown in Fig. 9.  Table

V shows the starting point, the optimal coarse model solution and the final solution.  Detailed responses

are shown in Fig. 10.

Microstrip Bandstop Filter with Open Stubs (Fig. 11)

The optimization parameters are

T
r

T
f WWLLLWW ][,][ 2121021 == xx

The width of the middle microstrip line is fixed at W0= 25 mil.  The preassigned parameters are again εr

and H , with x0=[25 mil 9.4]T.  The dielectric loss tangent is 0.002.  The coarse model consists of

empirical microstrip lines, Tee-junctions and ideal open circuits (see Fig. 11(b)).  The design

specifications are
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 dB121 −≥S  for ω ≥ 12 GHz and for ω ≤ 8 GHz

dB2521 −≤S  for 9 GHz ≤ ω ≤ 11 GHz

Because of symmetry we have five components.  The sensitivity measures of the coarse model responses

w.r.t. the preassigned parameters are given in Table VI.  The designated components are taken as # 2, 3,

5.  The preassigned parameter vector is TΤΤΤ ][ 532 xxxx = , where T
irii H ][ε====x for i= 2, 3, 5.  Here
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Notice that the preassigned parameters of component # 2 are selected not to be functions of xr (first two

rows of Br are zeros).  They are different constants in each iteration.  The fine model is analyzed by

Momentum [15] and the coarse model by OSA90/hope [13].  We use Momentum_Driver (see Section V).

sΩ  contains 35 frequencies while pΩ  contains 17.  The algorithm needs 5 iterations (1.5 hr), terminating

because the trust region radius reaches its minimum value.  The trace of the objective function is shown in

Fig. 12.  Responses at the initial solution are shown in Fig. 13.  Fig. 14 shows a detailed frequency sweep

at the solution.  The starting point, the optimal coarse model solution and the final solution are given in

Table VII.

The fine model was optimized directly using the Momentum minimax optimizer [15], using 17

frequency points, starting at the optimal solution of the coarse model, and converging to the solution in

Table VII.  Ten hours are required (quadratic interpolation was used).  Fig. 15 compares the results of

direct Momentum optimization with those of the ESMDF approach.

VII. CONCLUSIONS

We expand the original space mapping technique for circuit design.  We deliberately change some

preassigned parameters in some of the coarse model components to align the coarse model with the fine
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model.  A mapping is established from the optimization variables to those preassigned parameters.  This

mapping is sparse and needs only few fine model simulations to be established.  Our algorithm calibrates

the coarse model w.r.t. the fine model.  It updates the mapping and exploits the resulting mapped

(enhanced) coarse model with a trust region optimization methodology.  Software implementation

including interfacing with external EM/circuit simulators is addressed.  We have successfully applied our

approach to several design problems.

APPENDIX

For filter type responses a rough estimate of the center frequency and bandwidth is as follows.

We assume that the response is approximately similar to the pdf curve of a normal distribution.  Let the

filter response be denoted by R(ω), where ω  is frequency (M points in the range of interest).  An

approximation to the center frequency µ is given by

��
==

=
M

i
i

M

i
ii ωRωRωµ

11

)(/))(( (A.1)

Similarly, the bandwidth is approximated by

2

11

2 )(/))((2 µωRωRωσ
M

i
i

M

i
ii −= ��

==
(A.2)

The response R is taken as  S21  for a bandpass filter and  S11  for a bandstop filter.  We have to

emphasize that although these approximations are rough they are very useful in extracting the preassigned

parameters in the case of severe misalignment between coarse and fine models (for example, the HTS

filter in Section VI).
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TABLE I
RESPONSE SENSITIVITY MEASURES W.R.T. THE PREASSIGNED PARAMETERS

OF THE MICROSTRIP TRANSFORMER COARSE MODEL COMPONENTS

Component # iŜ

1 1.00

2 0.05

3 0.39

4 0.04

5 0.77

TABLE II
VALUES OF THE DESIGN PARAMETERS FOR THE MICROSTRIP TRANSFORMER

Parameter
(mm)

Starting point Optimal coarse
model solution

Solution reached by our
ESMDF algorithm

W1 0.40 0.381 0.335

W2 0.15 0.151 0.136

W3 0.05 0.042 0.039

L1 3.00 2.783 2.990

L2 3.00 3.003 3.079

L3 3.00 3.085 3.139
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TABLE III
VALUES OF THE PREASSIGNED PARAMETERS OF THE MICROSTRIP
TRANSFORMER COARSE MODEL DESIGNATED COMPONENTS AT

THE INITIAL AND FINAL ITERATIONS

Preassigned
parameters

Original value of
the preassigned

parameters

Preassigned
parameters at the

final iteration

H1 25 mil 19.36 mil

H3 25 mil 20.97 mil

H5 25 mil 21.48 mil

εr1 9.7 8.57

εr3 9.7 9.17

εr5 9.7 9.31

TABLE IV
RESPONSE SENSITIVITY MEASURES W.R.T. THE PREASSIGNED PARAMETERS

OF THE HTS FILTER COARSE MODEL COMPONENTS

Component # iŜ

1 0.69

2 1.00

3 0.30

TABLE V
VALUES OF THE DESIGN PARAMETERS FOR THE HTS FILTER

Parameter
(mil)

Starting point Optimal coarse
model solution

Solution reached by our
ESMDF algorithm

S1 20.0 20.76 19.0

S2 100 108.46 78.0

S3 100 101.80 80.0

L1 190 172.27 178.5

L2 190 213.83 201.5

L3 190 172.74 177.5
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TABLE VI
RESPONSE SENSITIVITY MEASURES W.R.T. THE PREASSIGNED PARAMETERS

OF THE MICROSTRIP OPEN STUB FILTER COARSE MODEL COMPONENTS

Component # iŜ

1 0.14

2 0.64

3 0.84

4 0.19

5 1.00

TABLE VII
VALUES OF THE DESIGN PARAMETERS FOR THE MICROSTRIP OPEN STUB FILTER

Parameter
(mil)

Starting point Optimal coarse
model solution

Solution reached by our
ESMDF algorithm

Solution obtained by
direct optimization

W1 5.00 3.79 3.80 3.70

W3 10.0 10.25 10.16 9.89

L0 120 124.23 124.78 117.50

L1 120 131.60 124.61 125.05

L2 120 115.89 107.48 110.03
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Fig. 1.  Three-section microstrip transformer: (a) the physical structure; (b) the coarse model.
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Fig. 2.  Changing the preassigned parameters in some of the coarse model components (the
components in Set A) results in aligning the coarse model (b) with the fine model (a).
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Fig. 3.  Driving EM/circuit simulators from inside Matlab.
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Fig. 4.  The objective function of the microstrip transformer fine model.
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Fig. 5.  The fine (• ) and mapped coarse model ( ) responses of the microstrip
transformer: (a) at the initial solution; (b) at the final solution
(detailed frequency sweep).
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Fig. 6. The HTS filter: (a) the physical structure; (b) the coarse model.
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the first component (−⋅−⋅−); (b) the second component ( ); (c) the third component (- - -).
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Fig. 8.  The Sonnet em fine model response (•• ) and the coarse model
response ( ) of the HTS filter at the initial solution.
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Fig. 9.  The objective function of the HTS filter fine model.
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Fig. 10.  Detailed frequency sweep of the fine and coarse model responses of the
HTS filter at the final solution: (a) |S21|; (b) |S21| in decibels.
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Fig. 11.  Microstrip bandstop filter with open stubs: (a) the physical structure; (b) the coarse model.
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Fig. 12. The objective function of the open stub filter fine model.
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Fig. 13.  The fine model response (•• ) versus the coarse model response ( )
of the open stub filter at the initial solution.
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Fig. 14.  Detailed frequency sweep of the fine and coarse model responses
of the open stub filter at the final solution.
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Fig. 15.  The fine model responses of the open stub filter at the solution obtained
by direct Momentum optimization ( ) and by our ESMDF algorithm (----).
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