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Coarse Model Calibration Techniques

in space mapping (Bandler et al., 1994-2001)

this calibration is performed by means of

design parameter space transformation

Ye and Mansour (1997) enhanced models by adding

elements to nonadjacent components

here we calibrate the coarse model by exploiting

preassigned parameters
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Key Preassigned Parameters (KPP)

the KPP are assumed to be non-optimizable

examples: dielectric constant, substrate height, etc.

the coarse model is very sensitive to KPP

the coarse model is calibrated to match the fine model by tuning the KPP

our algorithm establishes a mapping from some optimizable parameters to KPP

the mapping is updated iteratively
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3:1 Microstrip Transformer

T
r WWW ][ 321=x

rr xBcx +=

T
irii Hε ][=x

T][ 531


xxxx =

MSL MSTEP

comp. #1

MSL MSTEP MSL

comp. #2 comp. #3 comp. #4 comp. #5

T
f LLLWWW ][ 321321=x

W
1

L
1

L
2

L
3

W
2

W
3

r = 9.7,  H = 25 mil



Coarse Model Decomposition

xi represents the KPP of the ith component, i I = {1,2,…, N}

N is the number of coarse model components

Set A: contains “relevant” coarse model components

Set B: contains coarse model components for which the coarse model 

is insensitive to their KPP
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Coarse Model Decomposition

Step 1 for all i I = {1,2,…, N} evaluate
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Coarse Model Decomposition

example: 3:1 microstrip transformer
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ESMDF Algorithm

Determine the relevant

components of the coarse
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Expanded Space Mapping Optimization Algorithm

mapped coarse model optimization
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Expanded Space Mapping Optimization Algorithm

mapped coarse model optimization

exploiting trust region methodology
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Expanded Space Mapping Optimization Algorithm

KPP extraction

),()(minarg )()()(
xxRxRx

x

i
fc

i
ff

i −=

1
)1-()( εi

f
i
f − xx

Simulation Optimization Systems Research Laboratory
McMaster University

2
)()1()1-()()( ),()( εi

r
i

r
ii

fc
i
ff +− −

hBxxRxR

stopping criteria



3:1 Microstrip Transformer

load impedance is 50 

source impedance is 150 

“fine” model: Sonnet’s em

parameterized by OSA’s Empipe

“coarse” model: OSA90/hope

specifications

|S11|  –20 dB for 5 GHz    15 GHz

Simulation Optimization Systems Research Laboratory
McMaster University

W
1

L
1

L
2

L
3

W
2

W
3

MSL MSTEP

comp. #1

MSL MSTEP MSL

comp. #2 comp. #3 comp. #4 comp. #5



3:1 Microstrip Transformer

load impedance is 50 

source impedance is 150 

“fine” model: Sonnet’s em

parameterized by OSA’s Empipe

“coarse” model: OSA90/hope

specifications

|S11|  –20 dB for 5 GHz    15 GHz

Simulation Optimization Systems Research Laboratory
McMaster University

W
1

L
1

L
2

L
3

W
2

W
3

MSL MSTEP

comp. #1

MSL MSTEP MSL

comp. #2 comp. #3 comp. #4 comp. #5



3:1 Microstrip Transformer

load impedance is 50 

source impedance is 150 

“fine” model: Sonnet’s em

parameterized by OSA’s Empipe

“coarse” model: OSA90/hope

specifications

|S11|  –20 dB for 5 GHz    15 GHz

Simulation Optimization Systems Research Laboratory
McMaster University

W
1

L
1

L
2

L
3

W
2

W
3

MSL MSTEP

comp. #1

MSL MSTEP MSL

comp. #2 comp. #3 comp. #4 comp. #5



T
f LLLWWW ][ 321321=x

T
r WWW ][ 321=x

rr xBcx +=

T
irii Hε ][=x

Simulation Optimization Systems Research Laboratory
McMaster University

3:1 Microstrip Transformer
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3:1 Microstrip Transformer

initial iteration
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3:1 Microstrip Transformer

next iteration
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3:1 Microstrip Transformer

final iteration
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3:1 Microstrip Transformer

detailed frequency sweep of the optimal response
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3:1 Microstrip Transformer Direct EM Optimization

elapsed time by OSA90 minimax optimization (using quadratic interpolation):  153 min

elapsed time by the ESMDF algorithm: 17 min
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Microstrip Bandstop Filter with Open Stubs

“fine” model: Momentum

(Agilent EEsof EDA)

“coarse” model: OSA90/hope

specifications

|S21|  -1 dB for   12 GHz and   8 GHz

|S21|  -25 dB for 9 GHz    11 GHz
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r = 9.4,  H = 25 mil
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Microstrip Bandstop Filter with Open Stubs

coarse model decomposition

hence
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Microstrip Bandstop Filter with Open Stubs
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Microstrip Bandstop Filter with Open Stubs

initial response
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Microstrip Bandstop Filter with Open Stubs

final response
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Microstrip Bandstop Filter with Open Stubs

detailed frequency sweep at the optimal solution
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Microstrip Bandstop Filter with Open Stubs

direct optimization

elapsed time by Momentum optimization (using quadratic interpolation): 10 hr

elapsed time by the ESMDF algorithm: 1.5 hr
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Conclusions

we expand the original space mapping approach

we exploit key preassigned parameters (KPP)

we tune the KPP in “relevant components” of the coarse model

to align it with the fine model

a mapping is established from the optimization variables to the KPP

the mapping is updated iteratively 
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3:1 Microstrip Transformer Yield Analysis

utilize the mapped coarse model obtained at the final iteration

assume a uniform distribution with 0.25 mil tolerance on all six geometrical parameters

estimate the yield at the solution obtained by the ESMDF algorithm 

mapped coarse model: 78 %

fine model: 79% 
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