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Outline

the SMSM algorithm (Bakr et al., 1998-2001) 

SMX system decomposition

examples for the original algorithm

simplified Parameter Extraction procedure

design examples
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Introduction

SMSM approach — an iteratively refined surrogate of the fine model is used to solve the 

design problem

Object-Oriented Design (OOD) abstracts the basic behavior of models and optimizers

SMX can support a number of commercial EM/circuit simulators as well as in-house 

simulators

SMX provides a user-friendly interface
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The Surrogate Model

the surrogate model at the ith iteration is a convex combination of a mapped coarse model 

and a linearized fine model:

the mapped coarse model utilizes the frequency-sensitive mapping

where

the parameters B(i)  nn, s(i)  n1, t (i)  n1, c(i)  n1,  (i)  11 and  (i)  11

are obtained such that the mapped coarse model approximates the fine model over a given 

set of fine model points V (i) and frequencies 
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The Surrogate Model (continued)

the mapping parameters are obtained through the optimization process 

(Bakr et al., 1998-2001) 

where

(multipoint parameter extraction)
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The Algorithm Flowchart
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SMX System Decomposition

SMX user
interface

SMX engine

model optimizer

file system

simulator
drivers
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Algorithm Core: SMX Engine

the SMX engine is represented as the SMX_Engine class

base classes for Space Mapping

Optimizer — optimization utilities

Simulator — simulation utilities

Model — fine, coarse and surrogate model 
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Optimizer Class

GetNorm

FDF

GetError

SetConstraintMatrix

...

GetNorm

SetHuberThreshold

...

GetNorm

...

Optimizer

Huber Minimax
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Simulator Class

WriteInputFile

Simulate

GetResponses

...

WriteInputFile

Simulate

GetResponses

...

WriteInputFile

Simulate

GetResponses

...

WriteInputFile

Simulate

GetResponses

...

WriteInputFile

Simulate

GetResponses

...

OSA90 em user simulator

Simulator

Momentum
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Model and SurrogateModel Class

SetFrequencies

SetParameters

SetLambda

GetResponses

...

SetFrequencies

SetParameters

GetResponses

...
...

Model Simulator

SurrogateModel
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Two-Section 10:1 Capacitively-Loaded Impedance Transformer

(Bandler, 1969)

“fine” model

“coarse” model

RL=10

L1 L2

Zin C1 C2 C3

RL=10

L1 L2

Zin
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Two-Section Impedance Transformer

“fine” model: OSA90/hope

initial response optimal response



HTS Quarter-Wave Parallel Coupled-Line Microstrip Filter

(Westinghouse, 1993)
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we take L0 = 50 mil, H = 20 mil, 

W = 7 mil, er = 23.425, loss 

tangent = 310−5; the 

metalization is considered 

lossless

the design parameters are

xf = [L1 L2 L3 S1 S2 S3] 
T

specifications

|S21|  0.95 for 4.008 GHz    4.058 GHz

|S21|  0.05 for   3.961 GHz and   4.099 GHz
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HTS Filter Design (Test Case)

“fine” model:

OSA90/hope built-in models of microstrip 

lines and coupled microstrip lines (open 

circuits are modeled by an empirical model 

for a microstrip open stub)

“coarse” model:

OSA90/hope built-in models of 

microstrip lines and coupled microstrip 

lines (open circuits are ideally open)
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HTS Filter Design (Test Case)

“fine” model: OSA90/hope

initial response optimal response
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HTS Filter Design

“fine” model: Momentum (Agilent EEsof EDA)

SMX optimization 

(4 iterations, 5 fine model simulations)

refined by Momentum optimization
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Simplified Parameter Extraction Procedure

we have noticed that the vectors s and t are practically zero

the matrix B is updated using Broyden update

extract only xc ,  and  at a single point 

where Nf is the number of frequency points per frequency sweep
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Algorithm Summary

Step 1 initialize

Step 2 apply the simplified parameter extraction procedure

Step 3 obtain the tentative step  by solving

Step 4 check if step is successful 
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Algorithm Summary (continued)

Step 5 update B (Broyden, 1965)

Step 6 update Jf , , and 

Step 7 check the stopping criterion, if satisfied then stop

Step 8 set i=i+1 and go to Step 2 
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Update Parameters 
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Update Parameters (continued)
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Stopping Criteria

maximum number of iterations reached

optimization parameters step length
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Two-Section Impedance Transformer

“fine” and “coarse” model: OSA90/hope

initial response optimal response
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Two-Section Impedance Transformer Objective Function

5 iterations, 6 fine model simulations
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HTS Filter Design

“fine” and “coarse” model: OSA90/hope 

(specification slightly different from previous design)

initial response optimal response
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HTS Filter Design Objective Function

4 iterations, 5 fine model simulations
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Conclusions

the SMX system design is formally presented for the first time  

state-of-the-art optimization technology is utilized

object-oriented programming is used to construct the system

new optimization methods and new simulators can be plugged in  

the SMX is a powerful tool for engineering optimization and algorithm research

the original SMX parameter extraction procedure is effectively simplified
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