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ABSTRACT 
 
In this work, an efficient procedure to realize electromagnetics-based yield optimization and 
statistical analysis of microwave structures using space mapping-based neuromodels is proposed.  
A generalized relationship between the fine and coarse model sensitivities through the Jacobian of 
the neuromapping is proposed.  Our technique is illustrated by the EM-based statistical analysis 
and yield optimization of an HTS microstrip filter. 
 
INTRODUCTION 
 
With the increasing availability of commercial EM simulators, it is very desirable to include them in 
statistical analysis and yield-driven design of microwave circuits.  Given the high cost in 
computational effort imposed by the EM simulators, creative procedures must be developed to 
efficiently use them for statistical analysis and design. 
 
We propose the use of space mapping-based neuromodels for efficient and accurate EM-based 
statistical analysis and yield optimization of microwave structures.  A general equation to express 
the relationship between the fine and coarse model sensitivities through a nonlinear, frequency-
sensitive neuromapping is presented.  We illustrate our technique by the yield analysis and 
optimization of a high-temperature superconducting (HTS) quarter-wave parallel coupled-line 
microstrip filter. 
 
YIELD ANALYSIS AND OPTIMIZATION VIA SPACE MAPPING BASED 
NEUROMODELS 
 
Let the vectors xc, xf ∈ ℜn represent the design parameters of the coarse and fine models, 
respectively.  The operating frequency ω, used by the fine model, can be different to that used by the 
coarse model ωc.  Let Rc(xc,ωc), Rf (xf,ω) ∈ ℜr represent the coarse and fine model responses at ωc 
and ω, respectively.  We denote the corresponding SM-based neuromodel responses at frequency ω 
as RSMBN (xf,ω), given by 
 

),(),( cccfSMBN ωω xRxR =  (1)
 
with 
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where the mapping function P is implemented by a neural network following any of the 5 
neuromapping variations (SM, FDSM, FSM, FM or FPSM) described in the work by Bandler et al. 
[1].  We assume that a suitable mapping function P has already been found (i.e., a neural network 
with suitable complexity has already been trained). 
 
If the SM-based neuromodel is properly developed, 
 

),(),( ωω fSMBNff xRxR ≈  (3)
 
for all xf and ω in the training region. 
 
Let the Jacobian of the fine model responses w.r.t. the fine model parameters be Jf ∈ ℜr×n; let the 
Jacobian of the coarse model responses w.r.t. the coarse model parameters and mapped frequency 
be Jc ∈ ℜr×(n+1) and let the Jacobian of the mapping w.r.t. the fine model parameters be JP ∈ 
ℜ(n+1)×n.  Then the sensitivities of the fine model responses can be approximated using 
 

Pcf JJJ ≈  (4)
 
The accuracy of the approximation of Jf using (4) will depend on how well the SM-based 
neuromodel reproduces the behavior of the fine model in the training region. 
 
If the mapping is implemented with a 3-layer perceptron with h hidden neurons, (2) is given by 
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where W o ∈ ℜ(n+1)×h is the matrix of output weighting factors, bo∈ ℜn+1 is the vector of output bias 
elements, ΦΦΦΦ ∈ ℜh is the vector of hidden signals, s ∈ ℜh is the vector of activation potentials, W h ∈ 
ℜh×(n+1) is the matrix of hidden weighting factors, bh∈ ℜh is the vector of hidden bias elements and 
h is the number of hidden neurons.  A typical choice for the nonlinear activation functions is 
hyperbolic tangents, i.e., ϕ(⋅) = tanh(⋅).  All the internal parameters of the neural network, bo, bh, W o 
and  W h are constant since the SM-based neuromodel has been already developed. 
 
The Jacobian JP is obtained from (5-7) as 
 

ho
P WJWJ Φ=  (8)

 
where JΦ ∈ ℜh×h is a diagonal matrix given by JΦ = diag(ϕ ' (sj)), with j = 1… h.  If the SM-based 
neuromodel uses a 2-layer perceptron, the Jacobian JP is simply 
 

o
P WJ =  (9)
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which corresponds to the case of a frequency-sensitive linear mapping.  Notice that by substituting 
(9) in (4) and assuming a frequency-insensitive neuromapping we obtain the lemma found by Bakr 
et al. [2], since in the case of a 2-layer perceptron with no frequency dependence, W o ∈ ℜn×n. 
 
YIELD OPTIMIZATION OF AN HTS FILTER (SYMMETRIC CASE) 
 
Consider a high-temperature superconducting (HTS) parallel coupled-line microstrip filter [1, 3] 
illustrated in Fig. 1.  OSA90/hope built-in linear elements connected by circuit theory form the 
“coarse” model.  Sonnet’s em driven by Empipe forms the fine model, using a high-resolution 
grid.  The SM-based neuromodel of the HTS filter of [3] is used.  The corresponding SM-based 
neuromodel is illustrated in Fig. 2, which implements a frequency partial-space mapped 
neuromapping with 7 hidden neurons, mapping only L1, S1 and the frequency (3LP:7-7-3).  
Applying direct minimax optimization to the coarse model, we obtain the optimal coarse solution 
xc

*.  We apply direct minimax optimization to the SM-based neuromodel, starting at xc
*, to obtain 

the optimal SM-based neuromodel nominal solution xSMBN
*. 

 
For yield analysis, we consider 0.2% of variation for the dielectric constant and for the loss tangent, 
as well as 75 micron of variation for the physical dimensions, with uniform statistical distributions.  
We perform Monte Carlo yield analysis of the SM-based neuromodel around xSMBN

* with 500 
outcomes.  This takes a few tens of seconds on a PC (AMD 640MHz, 256M RAM, Windows NT 
4.0).  A single outcome calculation for the same circuit using an EM simulation takes about 5 hours.  
The responses for 50 outcomes are shown in Fig. 3.  The yield calculation is shown in Fig. 4.  A 
yield of only 18.4% is obtained at xSMBN

*.  We then apply yield optimization to the SM-based 
neuromodel with 500 outcomes using the Yield-Huber optimizer available in OSA90/hope, 
obtaining the optimal yield solution: xSMBN

Y*.  The corresponding responses for 50 outcomes are 
shown in Fig. 5.  The yield is increased from 18.4% to 66%, as shown in Fig. 6. Excellent 
agreement between the EM responses and the SM-based neuromodel responses was found at both 
the optimal nominal solution and the optimal yield solution. 
 
CONCLUSIONS 
 
An efficient procedure to realize EM-based statistical analysis and yield optimization of microwave 
structures is proposed.  A general equation relates the fine and coarse model sensitivities through 
the Jacobian of the neuromapping.  The yield-driven design of an HTS filter is illustrated. 
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Fig. 1.  HTS quarter-wave parallel coupled-line microstrip 
filter. 

Fig. 2.  SM-based neuromodel of the HTS filter for yield 
analysis assuming symmetry (L1c and S1c correspond to L1 
and S1 as used by the coarse model). 
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Fig. 3.  Monte Carlo yield analysis of the SM-based 
neuromodel responses around the optimal nominal solution 
xSMBN

* with 50 outcomes. 
 

Fig. 4.  Histogram of the yield analysis of the SM-based 
neuromodel around the optimal nominal solution  xSMBN

* 
with 500 outcomes. 
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Fig. 5.  Monte Carlo yield analysis of the SM-based 
neuromodel responses around the optimal yield solution 
xSMBN

 Y* with 50 outcomes. 

Fig. 6.  Histogram of the yield analysis of the SM-based 
neuromodel around the optimal yield solution xSMBN

Y* with 
500 outcomes (considering symmetry). 
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