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Artificial Neural Networks (ANN) in Microwave Design

ANNSs are suitable models for microwave circuit optimization
and statistical design (Zaabab, Zhang and Nakhla, 1995,
Gupta et al., 1996, Burrascano and Mongiardo, 1998, 1999)

once trained, neuromodels can be used for
optimization in the training region

the principal drawback of this ANN optimization approach
IS the cost of generating sufficient learning samples

the extrapolation ability of neuromodels is poor, making
unreliable any solution predicted outside the training region

introducing knowledge can alleviate these limitations
(Gupta et al., 1999)
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Conventional ANN Optimization Approach
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many fine model simulations are usually needed
solutions predicted outside the training region are unreliable
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Hybrid “AS” EM-ANN Neuromodeling Concept
(Gupta et al., 1996)
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PKI1 Neuromodeling Concept
(Gupta et al., 1996)
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KBNN Neuromodeling Concept
(Zhang et al., 1997)
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Exploiting Space Mapping for Neuromodeling

(Bandler et. al., 1999)
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Space Mapping Based Neuromodeling

(Bandler et. al., 1999)
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EM-based Yield Optimization Via SM-Based Neuromodels
(Bandler et. al., 2001)

the SM-based neuromodel responses are given by

RSMBN (Xf 1a)) - Rc(xc'a)c)

X
|: C:|: P(Xf ,a))
a)C

where the mapping function P is implemented by a
neuromapping variation (SM, FDSM, FSM, FM or FPSM)

with
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Yield Optimization Via SM-Based Neuromodels (continued)
Rt (Xt @) = Rovgn (X1, @)
for all x; and w in the training region

we can show that

Ji=Jd.Jp
J; € RO Jacobian of the fine model responses w.r.t. the fine model parameters
J, € Rr(+]) Jacobian of the coarse model responses w.r.t. the coarse model

parameters and mapped frequency

Jp € RO+1xn Jacobian of the mapping function w.r.t. the fine model parameters



Simulation Optimization Systems Research Laboratory @
@ McMaster University QAF}%QA#%R

Yield Optimization Via SM-Based Neuromodels (continued)

If the mapping is implemented with a 3-layer perceptron with h hidden neurons

P(X,@) =W B(x; @)+, B(x;,0)=[p(s) 0(s) . o). s—w h{xf} p"
)]

Wo e Rn+i)xh matrix of output weighting factors

boe R+t vector of output bias elements

@D e R" vector of hidden signals

se RN vector of activation potentials

W h e Rjhx(n+l) matrix of hidden weighting factors

bhe RN vector of hidden bias elements

() nonlinear activation functions

the Jacobian J; is given by J, = W° J,W"  where J, € R™" is a diagonal
matrix given by J,, = diag(@" (s;)), with j=1... h

iIf the mapping employs a 2-layer perceptron, J, = W°
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HTS Quarter-Wave Parallel Coupled-Line Microstrip Filter
(Westinghouse, 1993)

we take L, =50 mil, H =20 mil,
W =7mil, g = 23.425, loss
tangent = 3x107°; the
metalization is considered
lossless

o
-
L

the design parameters are
Xe=[Li Ly L3S S, 5] 7

specifications

|S,,| = 0.95 for 4.008 GHz < v < 4.058 GHz
1S,,] £0.05 for @< 3.967 GHz and @ > 4.099 GHz
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HTS Microstrip Filter: Fine and Coarse Models

fine model. coarse model:
Sonnet’s em™ with high resolution OSA90/hope™ built-in models of open
grid circuits, microstrip lines and coupled

microstrip lines
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SM-based Neuromodel of the HTS Filter for Yield Optimization
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Coarse Optimization of the HTS Filter

coarse and fine model responses at the optimal coarse solution

OSA90/hope™ (—) and em™ (e)
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Nominal Optimization of the HTS Filter

fine model response and SM-based neuromodel response
at the optimal nominal solution Xqgy

OSA90/hope™ (-) and em™ (e)
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Yield Analysis of the HTS Filter

at the nominal solution Xg,,g\ (Starting point): yield = 18.4%

0.8 / \ \\
0.6
0.4 \
0.2
0
3.901 3.966 4.031 4.096 4,161

frequency (GHz)

number of outcomes

150
1007 .
yield = 18.4%
50r
0 I
-0.0624 0.0624 0.1871 0.3118 0.4365 0.5612

max error



1S4l

Simulation Optimization Systems Research Laboratory @
@ McMaster University = @FI,?DQAEEB

Yield Optimization of the HTS Filter

at the optimal yield solution Xqgy" : yield = 66%
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Yield Optimization of the HTS Filter (continued)

fine model response and SM-based neuromodel response
at the optimal yield solution Xqyg\""

OSA90/hope™ (-) and em™ (e)
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HTS Filter Considering Asymmetry
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SM-based Neuromodel for the Asymmetric HTS Filter
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Yield Analysis of the Asymmetric HTS Filter

at the nominal solution Xg,,gy (Starting point): yield = 14%
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Yield Analysis of the Asymmetric HTS Filter (continued)

at the optimal yield solution Xggy"" : Yield = 68.8%
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Conclusions

we propose EM-based statistical analysis and yield optimization using SM-
based neuromodels

we relate the fine model sensitivities to the coarse model sensitivities through
the Jacobian of the neuromapping

we consider a high-temperature superconducting (HTS) microstrip filter

we reuse the symmetrically derived neuromapping for asymmetric tolerance
variations in the physical parameters

the HTS filter yield is increased from 14% to 69%

we find excellent agreement between EM and SM-based neuromodel
responses at both the optimal nominal solution and the optimal yield solution
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