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Space Mapping

(Bandler et al., 1994)
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Exploiting Space Mapping for Neuromodeling

(Bandler et. al., 1999)
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Artificial Neural Networks (ANN) in Microwave Design

ANNs are suitable models for microwave circuit optimization 

and statistical design (Zaabab, Zhang and Nakhla, 1995, 

Gupta et al., 1996, Burrascano and Mongiardo, 1998, 1999)

once trained, neuromodels can be used for 

optimization in the training region

the principal drawback of this ANN optimization approach 

is the cost of generating sufficient learning samples

the extrapolation ability of neuromodels is poor, making 

unreliable any solution predicted outside the training region

introducing knowledge can alleviate these limitations

(Gupta et al., 1999)
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Conventional ANN Optimization Approach

step 1 step 2

many fine model simulations are usually needed

solutions predicted outside the training region are unreliable 
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Neural Space Mapping (NSM) Optimization

(Bandler et al., 2000)

exploits the SM-based neuromodeling techniques 

(Bandler et al., 1999)

coarse models are used as sources of knowledge to reduce 

learning data and improve generalization and extrapolation

NSM requires a reduced set of upfront learning base points

initial learning base points are selected through 

coarse model sensitivity analysis 

neuromappings are developed iteratively: generalization is 

controlled by gradually increasing complexity from a 3-layer 

perceptron with 0 hidden neurons
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Neural Space Mapping (NSM) Optimization Concept

step 1 step 2

(2n + 1 learning base points for a 

microwave circuit with n design 

parameters)
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Neural Space Mapping (NSM) Optimization Concept (continued)

step 3 step 4
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Neural Space Mapping (NSM) Optimization Algorithm

Start
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HTS Quarter-Wave Parallel Coupled-Line Microstrip Filter

(Westinghouse, 1993)

we take L0 = 50 mil, H = 20 mil, 

W = 7 mil, er = 23.425, loss 

tangent = 3´10-5; the 

metalization is considered 

lossless 

the design parameters are 

xf = [L1 L2 L3 S1 S2 S3] 
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NSM Optimization of the HTS Microstrip Filter

specifications

|S21|  0.95 for 4.008 GHz  w  4.058 GHz

|S21|  0.05 for w  3.967 GHz and w  4.099 GHz 

“fine” model: Sonnet’s em with high resolution grid 

“coarse” model: OSA90/hope built-in models of open circuits, 

microstrip lines and coupled microstrip lines
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NSM Optimization of the HTS Filter (continued)

coarse and fine model responses at the optimal coarse solution 

OSA90/hope (-) and em (•)
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NSM Optimization of the HTS Filter (continued)

the initial 2n+1 points are chosen by performing sensitivity analysis on the coarse model: a 

3% deviation from xc
* for L1, L2, and L3 is used, while a 20% is used for S1, S2, and S3

coarse and fine model responses at base points 

OSA90/hope em
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NSM Optimization of the HTS Filter (continued)

learning errors at base points 

before any neuromapping mapping w , L1 and S1 with a 3LP:-7-5-3
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NSM Optimization of the HTS Filter (continued)

fine model response (•) at the next point predicted by the first NSM 

iteration and optimal coarse response (-)

(3LP:7-5-3,w, L1, S1)
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Bandstop Microstrip Filter with Quarter-Wave Open Stubs

we take H = 25 mil, W0 = 25 

mil, er = 9.4 (alumina)

the design parameters are 

xf = [W1 W2 L0 L1 L2] 
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NSM Optimization of the Bandstop Filter

specifications

|S21|  0.05 for 9.3 GHz  w  10.7 GHz

|S21|  0.9 for w  8 GHz and w  12 GHz 

“fine” model: Sonnet’s em with high resolution grid 

“coarse” model: transmission line sections and empirical formulas
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NSM Optimization of the Bandstop Filter (continued)

coarse and fine model responses at the optimal coarse solution 

coarse model (-) and em (•)

the initial 2n+1 points are chosen by performing sensitivity analysis on the coarse model: 

a 50% deviation from xc
* for W1, W2, and L0 is used, while a 15% is used for L1, and L2
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NSM Optimization of the Bandstop Filter (continued)

fine model response (•) at the point predicted by the second 

NSM iteration and optimal coarse response (-)

(3LP:6-3-2,w,W2)
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EM-based Yield Optimization Via SM-Based Neuromodels

(Bandler et. al., 2001)

the SM-based neuromodel responses are given by

with

where the mapping function P is implemented by a 

neuromapping variation (SM, FDSM, FSM, FM or FPSM)
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Yield Optimization Via SM-Based Neuromodels (continued)

for all xf and ω in the training region

we can show that

Jf  r´n Jacobian of the fine model responses w.r.t. the fine model parameters

Jc  r´(n+1) Jacobian of the coarse model responses w.r.t. the coarse model 

parameters and mapped frequency

JP  (n+1)´n Jacobian of the mapping function w.r.t. the fine model parameters

),(),( ww fSMBNff xRxR 

Pcf JJJ 
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Yield Optimization of the HTS Filter
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Yield Optimization of the HTS Filter

at the nominal solution (starting point): yield = 18.4%
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Yield Optimization of the HTS Filter (continued)

at the optimal yield solution: yield = 66%
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Conclusions

we describe an algorithm for EM optimization based on Space 

Mapping technology and Artificial Neural Networks

Neural Space Mapping (NSM) optimization exploits our 

SM-based neuromodeling techniques

we exploit SM-based neuromodels for EM statistical 

analysis and yield optimization

Simulation Optimization Systems Research Laboratory
McMaster University



Conclusions

we describe an algorithm for EM optimization based on Space 

Mapping technology and Artificial Neural Networks

Neural Space Mapping (NSM) optimization exploits our 

SM-based neuromodeling techniques

we exploit SM-based neuromodels for EM statistical 

analysis and yield optimization

Simulation Optimization Systems Research Laboratory
McMaster University



Conclusions

we describe an algorithm for EM optimization based on Space 

Mapping technology and Artificial Neural Networks

Neural Space Mapping (NSM) optimization exploits our 

SM-based neuromodeling techniques

we exploit SM-based neuromodels for EM statistical 

analysis and yield optimization

Simulation Optimization Systems Research Laboratory
McMaster University



Conclusions

we describe an algorithm for EM optimization based on Space 

Mapping technology and Artificial Neural Networks

Neural Space Mapping (NSM) optimization exploits our 

SM-based neuromodeling techniques

we exploit SM-based neuromodels for EM statistical 

analysis and yield optimization

Simulation Optimization Systems Research Laboratory
McMaster University


	Slide 1: Neural Space Mapping Methods for  Device Modeling and Optimal Design  J.W. Bandler and J.E. Rayas-Sánchez  Simulation Optimization Systems Research Laboratory  McMaster University           Bandler Corporation, www.bandler.com john@bandler.com   
	Slide 2
	Slide 3
	Slide 4
	Slide 5: Exploiting Space Mapping for Neuromodeling (Bandler et. al., 1999)  
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38

