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II. AGGRESSIVE SPACE MAPPING Abstract  —  We present a family of robust techniques for 
exploiting sensitivities in EM-based circuit optimization 
through Space Mapping (SM).  We utilize derivative 
information for parameter extractions and mapping updates.  
We exploit a Partial Space Mapping (PSM) concept where a 
reduced set of parameters is sufficient for parameter 
extraction optimization.  Upfront gradients of both EM (fine) 
model and coarse surrogates can initialize possible mapping 
approximations.  Illustrations include a two-section 10:1 
impedance transformer and a microstrip bandstop filter. 

A. Original Design Problem 

The original design problem is 
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Here, the fine model response vector is denoted by rf 
∈ℜm×1, e.g., |S11| at selected frequency points; m is the 
number of sample points; the fine model point is denoted 
xf∈ℜn×1, where n is the number of design parameters.  U 
is a suitable objective function.  xf

* is the optimal design. 

I. INTRODUCTION 

The SM approach [1] involves a suitable calibration of 
a fine model by a physically-based “coarse” surrogate.  
The fine model may be time intensive and field theoretic 
and accurate, while the surrogate is a faster (less accurate) 
representation. 

B. Parameter Extraction (PE) 

PE is crucial to SM: we extract a coarse model corres-
ponding to a fine model response.  For PE we designate a 
complete set of basic responses by R∈ℜM×1, not 
necessarily identical to r, where M is the product of 
number of simulation frequency points and number of 
basic responses.  Fine and coarse response vectors are 
denoted by Rf and Rc, respectively.  For example, we can 
use real and imaginary parts of S parameters. 

We present, for the first time, new techniques for 
exploiting exact sensitivities in EM-based circuit design in 
the context of SM technology.  If the EM simulator is 
capable of providing gradient information, these gradients 
can be exploited to enhance a coarse surrogate.  New 
approaches for utilizing derivatives in the parameter 
extraction process and mapping update are presented. 

C. Aggressive Space Mapping Approach An efficient procedure exploiting a PSM concept [2] is 
proposed.  Several approaches for utilizing sensitivities 
and PSM are suggested. 

Aggressive SM solves the nonlinear system 
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Alessandri et al. spurred the recent application of the 
adjoint network method using a mode matching 
orientation [3]. Currently, we are developing the adjoint 
technique within a method of moments environment [4].  
These techniques facilitate powerful gradient-based 
optimizers.  Our new work complements these efforts at 
gradient estimation for design optimization using EM 
simulations. 

for xf , where P is a mapping between the two model 
spaces and xc∈ℜn×1.  First-order Taylor approximations 
are given by 
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where the Jacobian of P at the jth iteration is expressed by 
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We designate an approximation to this Jacobian by the 
square matrix B∈ℜn×n, i.e., B ≈ Jp(xf ). 

In this context (9) becomes 
PSMPSM

cf BJJ ≈  (13)From (2) and (3b) we can formulate the system 

where BPSM∈ℜk×n and Jc
PSM ∈ℜM×k is the Jacobian of the 

coarse model at xc
PSM.  Solving (13) for BPSM yields the 

least squares solution at the jth iteration 0
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III.  A PROPOSED ALGORITHM 

A. PE Exploiting Sensitivity 

Through the traditional PE process we can obtain the 
point xc that corresponds to xf such that Fig. 1 Partial Space Mapping (PSM). 

 
cf RR ≈  (7) Relation (5b) becomes underdetermined.  The minimum 

norm solution for h(j) is given by Differentiating both sides of (7) w.r.t. xf , we obtain 
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C. Mapping Update Alternatives 

If we have exact derivatives throughout, we can use 
them to obtain B at each iteration in the PE.  Note that this 
matrix can be iteratively fed back into the GPE process 
and refined before making a step in the fine model space.  
We can also use (14) to update BPSM(j). 

Using (4) the relation (8) can be simplified to 

BJJ cf ≈  (9) 

where Jf  and Jc are the fine and coarse Jacobians at xf and 
xc, respectively (Jf , Jc ∈ℜM×n; M ≥ n).  Solving (9) for B 
yields a least squares solution. 

If we do not have exact derivatives, various approaches 
to initializing or constraining B and BPSM(1) can be 
devised, for example, we can use finite differences.  Either 
matrix may be updated using a Broyden update.  Hybrid 
schemes can be formally developed following the 
integrated gradient approximation approach to 
optimization by Bandler et al. [5]. 

At the jth iteration we obtain xc
(j) through a Gradient 

Parameter Extraction (GPE) process: 
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where λ is a weighting factor and E = [e1 e2 … en]. On the assumption that the fine and coarse models share 
the same physical background, Bakr et al. [6] suggested 
that B could be better conditioned, in the PE process, if it 
is constrained to be close to the identity matrix I by BxJxJE
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∆∆= ηη  (16) B. Partial Space Mapping (PSM) 

Consider utilizing a subset of the physical parameters in 
the coarse space xc

PSM ∈ ℜk×1, k≤n.  PSM is illustrated in 
Fig. 1.  It can be represented by 

where η is a weighting factor, ei and ∆bi are the ith 
columns of E and ∆B, respectively, defined as 

IBB

BJJE

−=∆

−=   cf  (17)








=












= s

f

fPSM
s
f

PSM
c

c x
xP

x
x

x
)(

 (12) 

The analytical solution of (16) is given by 
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Fig. 2. Optimal coarse model target response (—), the fine 
model response at the starting point (+) and final design (•) for 
the capacitively loaded 10:1 transformer with L1 and L2 as the 
PSM coarse model parameters. 

)()( 212 IJJIJJB ηη ++= −
f

T
cc

T
c  (18) 

D. Proposed Algorithm 

Step 1 Set j = 1.  Initialize B = I for the PE process. 
Obtain the optimal coarse model design xc

* and 
use it as the initial fine model point 
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Step 2 If derivatives exist execute GPE as in (10). 
Otherwise, execute the traditional PE where λ = 0. 

Step 3 Initialize the mapping matrix BPSM using (14). 
Step 4 Stop if 
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Step 5 Evaluate h(j) using (15). 
Step 6 Find the next xf

(j+1) using (6). 
 Step 7 Perform GPE or PE as in Step 2. Case 2.  We also apply the algorithm for xc

PSM = [L2].  
The result is very similar to Fig. 2.  We also converge in a 
single iteration (2 fine model evaluations).  The final 
mapping is 

Step 8 If derivatives exist use (14) to obtain BPSM(j).  
Otherwise update BPSM(j) using a Broyden formula. 

Step 9 Set j =j+1 and go to Step 4. 
The output of the algorithm is the fine space mapped 

optimal design fx and the mapping matrix BPSM. [ ] 0092.00027.0186.1067.1 −=PSMB  

Case 3.  We apply the algorithm for xc
PSM = [L1].  The 

result is again similar to Fig. 2.  Convergence is in a single 
iteration (2 fine model evaluations).  The final mapping is 

IV. EXAMPLES  

A. Capacitively Loaded 10:1 Impedance Transformer [7] 
[ ]00297.00092.0685.0133.1=PSMB   

We consider a “coarse” model as an ideal two-section 
transmission line (TL), where the “fine” model is a 
capacitively loaded TL with capacitors C1 = C2 = C3 = 10 
pF.  Design parameters are normalized lengths L1 and L2, 
w.r.t. the quarter-wave length Lq at the center frequency 1 
GHz, and characteristic impedances Z1 and Z2.  Thus, xf = 
[L1 L2 Z1 Z2]T.  Design specifications are 

B. Bandstop Microstrip Filter with Open Stubs [2] 

Our approach is applied to a symmetrical bandstop 
microstrip filter with three open stubs.  The open stub 
lengths are L1, L2, L1 and W1, W2, W1 are the 
corresponding stub widths.  An alumina substrate with 
thickness H = 25 mil, width W0 = 25 mil and dielectric 
constant εr = 9.4 is used for a 50 Ω feeding line.  The 
design parameters are xf = [W1 W2 L0 L1 L2]T.  The design 
specifications are 

GHz 5.1GHz 5.0for ,5.011 ≤≤≤ ωS   

with eleven points per frequency sweep.  We utilize the 
real and imaginary parts of S11 in the GPE (10).  We solve 
(10) using the Levenberg-Marquardt algorithm available 
in the Matlab Optimization Toolbox [8]. 

GHz 8 and GHz 12for   9.0

and,  GHz 7.10GHz 3.9for 05.0
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Case 1.  We consider xc
PSM = [L1 L2]T while xf

s = [Z1 
Z2]T are kept fixed.  We employed adjoint analysis [9] to 
obtain all Jacobians.  We initialize BPSM with (14).  The 
algorithm converges in a single iteration (2 fine model 
evaluations). See Fig. 2.  The final mapping is 

Sonnet’s em [10] driven by Empipe [11] is 
employed as the fine model, using a high-resolution grid 
with a 1mil×1mil cell size.  As a coarse model we use 
simple transmission lines and classical formulas to 
calculate the characteristic impedance and the effective 
dielectric constant of each transmission line.  We use 
OSA90/hope [11] built-in transmission line elements. 
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Using OSA90/hope xc
* = [4.560 9.351 107.80 111.03 

108.75]T (in mils).  We use 21 points per frequency 
sweep.  We utilize the real and imaginary parts of S11 and 
S21 in the traditional PE, for which λ = 0 in (10). 

During the PE we consider xc
PSM = [L1 L2]T while xf

s = 
[W1 W2 L0]T are held fixed.  Finite differences estimate the 
fine and coarse Jacobians.  We initialize B with (14). 

The algorithm converges in 5 iterations (6 fine model 
evaluations).  See Fig. 3. Results are shown in Table I.  
The final mapping is 
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TABLE I 
INITIAL AND FINAL DESIGNS FOR 

THE BANDSTOP MICROSTRIP FILTER USING L1 AND L2 
Parameter xf

(1) xf
(5) 

W1 4.560 7.329 
W2 9.351 10.672 
L0 107.80 109.24 
L1 111.03 115.53 
L2 108.75 111.28 

All values are in mils 
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Fig. 3. Optimal OSA90/hope coarse response (—) and em 
fine model response at the starting point (+) and at the final 
design (•) for the bandstop filter using a fine frequency sweep 
with L1 and L2 as the PSM coarse model parameters. 

V. CONCLUSIONS 

We present a family of robust techniques for exploiting 
sensitivities in EM-based circuit optimization through SM.  
We exploit a PSM concept where a reduced set of 
parameters is sufficient in the PE process.  Available 
gradients can initialize mapping approximations.  Exact or 
approximate Jacobians of responses can be utilized.  For 

flexibility, we propose different possible “mapping 
matrices” for the PE processes and SM iterations.  
Broyden updates can be used for approximated Jacobians.  
Trust region methodologies can be employed.  Our app-
roaches have been tested on several examples. 

Final mappings are useful in statistical analysis and 
yield optimization.  Furthermore, the notion of exploiting 
reduced sets of physical parameters reflects the idea of 
postproduction tuning. 
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