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Space Mapping

(Bandler et al., 1994)
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Implicit Space Mapping Theory: Modeling

implicit mapping Q between the spaces xf, xc and x
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Implicit Space Mapping Theory: Prediction

implicit mapping Q between the spaces xf, xc and x
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General Space Mapping Technology (Bandler et al., 1994-2002)

linearized: original and Aggressive Space Mapping

nonlinear: Neural Space Mapping, etc.

implicit: preassigned parameters (ISM) 

parameters x: coarse space parameters, neuron weights

mapping tableau, KPP (ISM) 
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General Space Mapping Steps

Step 1 select a mapping function (linear, nonlinear, neural)

Step 2 select an approach (implicit, explicit)

Step 3 optimize coarse model (initial surrogate) w.r.t. design 

parameters

Step 4 apply parameter extraction (KPP, neuron weights, coarse  

space parameters)

Step 5 reoptimize “mapped coarse model” (surrogate) w.r.t. design 

parameters (or evaluate inverse if available) 
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General Space Mapping Steps (continued) 

Step 6 simulate the fine model at the solution to Step 5       

Step 7 terminate if a stopping criterion (e.g., response meets 

specifications) is satisfied, else go to Step 4



An Implicit Space Mapping Algorithm—Preassigned 

Parameters

Step 1 select candidate preassigned parameters x as in ESMDF or 

by experience

Step 2 set i = 0 and initialize x(0)

Step 3 obtain optimal mapped coarse model

Step 4 predict       from
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An Implicit Space Mapping Algorithm—Preassigned 

Parameters (continued)

Step 5 simulate the fine model at       

Step 6 terminate if a stopping criterion (e.g., response meets 

specifications) is satisfied

Step 7 calibrate the mapped coarse model (surrogate) by extracting 

the preassigned parameters x

where we set 

Simulation Optimization Systems Research Laboratory
McMaster University

( 1) ( ) ( )arg min ( ) ( , )i+ i i

f f c f= −x R x R x x
x

( )i
c fx x = 

( )i

fx



An Implicit Space Mapping Algorithm—Preassigned 

Parameters (continued)

Step 8 increment i and go to Step 3
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Cheese Cutting Problem—A Numerical Example
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Cheese Cutting Problem—A Numerical Example 
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HTS Quarter-Wave Parallel Coupled-Line Microstrip Filter

(Westinghouse, 1993)
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we take L0 = 50 mil, H = 20 mil, 

W = 7 mil, er = 23.425, loss 

tangent = 310−5; the 

metalization is considered 

lossless

the design parameters are

xf = [L1 L2 L3 S1 S2 S3] 
T

specifications

|S21|  0.95 for 4.008 GHz  w  4.058 GHz

|S21|  0.05 for w  3.967 GHz and w  4.099 GHz



HTS Quarter-Wave Parallel Coupled-Line Microstrip Filter

(Westinghouse, 1993)

ADS implementation of coarse model
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HTS Quarter-Wave Parallel Coupled-Line Microstrip Filter

(Westinghouse, 1993)
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parameter initial solution
solution reached by 

the algorithm

L1 189.65 187.10

L2 196.03 191.30

L3 189.50 186.97

S1 23.02 22.79

S2 95.53 93.56

S3 104.95 104.86

all values are in mils



HTS Quarter-Wave Parallel Coupled-Line Microstrip Filter

(Westinghouse, 1993)
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preassigned 

parameters 

original 

values
final iteration

H1 20 mil 19.80 mil 

H2 20 mil 19.05 mil 

H3 20 mil 19.00 mil 

er1 23.425 24.404 

er2 23.425 24.245 

er3 23.425 24.334 



HTS Quarter-Wave Parallel Coupled-Line Microstrip Filter

(Westinghouse, 1993)

the fine (○) and optimal coarse model (⎯) responses at the initial 

solution
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HTS Quarter-Wave Parallel Coupled-Line Microstrip Filter

(Westinghouse, 1993)

the fine (○) and optimal coarse model (⎯) responses at the final 

iteration
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Conclusions

we propose Implicit Space Mapping (ISM) optimization

effective for EM-based modeling and design

coarse model is aligned with EM (fine) model

through preassigned parameters

easy implementation

no explicit mapping is involved 

no matrices to keep track of
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The Space Mapping Concept

(Bandler et al., 1994-)
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Conventional Space Mapping for Microwave Circuits

(Bandler et al., 1994)

Simulation Optimization Systems Research Laboratory
McMaster University

Z

C3
 = f (w,d)

coarse model

x
c

w
c

R
c 
(x

c 
,w

c
)

JDH +=Ñ wj

BE wj−=Ñ

r=Ñ Do

ED e=

HB m=

0=Ñ Bo

fine model

x
f

R
f 
(x

f 
,w)

w

),( w
w

f

c

c
xP

x
=









),(),( ww ffccc xRxR 

find

such that



Implicit Space Mapping Motivation

(Bandler et al., 2001)

Key Preassigned Parameters (KPP) (ESMDF algorithm)
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Implicit Space Mapping Motivation

(Bandler et al., 2001)

Key Preassigned Parameters (KPP) (ESMDF algorithm)
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General Space Mapping—Explicit Mapping

original Space Mapping, Aggressive Space Mapping, NISM, etc.

fine and coarse model
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General Space Mapping—Explicit Mapping

original Space Mapping, Aggressive Space Mapping, NISM, etc.

optimize coarse model
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General Space Mapping—Explicit Mapping

original Space Mapping, Aggressive Space Mapping, NISM, etc. 

evaluate fine model at optimal coarse space parameters
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General Space Mapping—Explicit Mapping

original Space Mapping, Aggressive Space Mapping, NISM, etc. 

set up the mapping and parameter extract

x could be neuron weights, coarse space parameters
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General Space Mapping—Explicit Mapping

original Space Mapping, Aggressive Space Mapping, NISM, etc. 

find the xf corresponding to the optimal coarse space parameters
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General Space Mapping—Explicit Mapping

original Space Mapping, Aggressive Space Mapping, NISM, etc. 

if P −1 is available evaluate xf  directly else optimization is used to 

obtain xf
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General Space Mapping—Implicit Mapping

preassigned parameters, etc.

optimize implicit mapped coarse model
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General Space Mapping—Implicit Mapping

preassigned parameters, etc.

evaluate fine model at optimal coarse space parameters 
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General Space Mapping—Implicit Mapping

preassigned parameters, etc.

parameter extract x
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General Space Mapping—Implicit Mapping

preassigned parameters, etc.

reoptimize implicit mapped coarse model (surrogate)

to predict the fine model design
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General Space Mapping—Implicit Mapping

preassigned parameters, etc.

explicit mapping to enhance the implicitly mapped coarse model
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Explicit Mapping vs. Implicit Mapping
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Space Mapping Practice—Cheese Cutting Problem
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Implicit Space Mapping Practice—Cheese Cutting Problem
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Implicit Space Mapping Practice—Cheese Cutting Problem
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Implicit Space Mapping: Steps 1-3

optimize coarse model

ADS/Momentum Implementation
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coarse model 

circuit

Implicit Space Mapping: Steps 1-3

optimize coarse model

ADS/Momentum Implementation
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sweep range

Implicit Space Mapping: Steps 1-3

optimize coarse model

ADS/Momentum Implementation
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optimizable 

parameters

Implicit Space Mapping: Steps 1-3

optimize coarse model

ADS/Momentum Implementation
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goal of the 

optimization

Implicit Space Mapping: Steps 1-3

optimize coarse model

ADS/Momentum Implementation
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optimizer

Implicit Space Mapping: Steps 1-3

optimize coarse model

ADS/Momentum Implementation



Implicit Space Mapping: Steps 4-5

simulate fine model using Momentum
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ADS/Momentum Implementation



Implicit Space Mapping: Steps 5-6

obtain the fine model result and check stopping criteria
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ADS/Momentum Implementation



Implicit Space Mapping: Step 7

calibrate coarse model: extract preassigned parameters x
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goals for parameter extraction 

(calibration step)

Implicit Space Mapping: Step 7

calibrate coarse model: extract preassigned parameters x

ADS/Momentum Implementation
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optimizer for parameter extraction

(calibration step)

Implicit Space Mapping: Step 7

calibrate coarse model: extract preassigned parameters x

ADS/Momentum Implementation
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fix the designable parameters: 

optimize preassigned parameters

Implicit Space Mapping: Step 7

calibrate coarse model: extract preassigned parameters x

ADS/Momentum Implementation



Implicit Space Mapping: Steps 8-3

fix preassigned parameters: reoptimize calibrated coarse model
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fix preassigned parameters: 

reoptimize calibrated coarse model

ADS/Momentum Implementation



Implicit Space Mapping: Steps 4-6

simulate fine model using Momentum,

satisfy stopping criteria
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ADS/Momentum Implementation
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3:1 Microstrip Transformer

initial iteration
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3:1 Microstrip Transformer

final iteration
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