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Introduction

using full wave EM simulator (fine model) inside the optimization 

loop is prohibitive
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Introduction

using simpler (less accurate) model inside the optimization loop

is more appropriate and practical

or
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The Space Mapping Concept

(Bandler et al., 1994-) 
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The Space Mapping Concept

(Bandler et al., 1994-) validation 
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Jacobian-Space Mapping Relationship

(Bakr et al., 1999)

through PE we match the responses

by differentiation 
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Jacobian-Space Mapping Relationship

(Bakr et al., 1999)

given coarse model Jacobian Jc and space mapping matrix B

we estimate

given Jc and Jf we estimate (least squares)
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Gradient Parameter Extraction (GPE)
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Partial Space Mapping (PSM)

a few coarse parameters may be sufficient

elapsed optimization time is reduced 

reflects the idea of postproduction tuning



the Jacobian-PSM relationship

the minimum norm solution for a quasi-Newton step h
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Mapping Update Using Exact Derivatives

Mapping Update Using Hybrid Approach

finite difference initialization used

then update using Broyden formula

Mapping Update By Constraining B

(Bakr et al., 2000)



Proposed PSM/GPE Algorithm

Step 1 set j = 1,  B = I for the PE process

Step 2 obtain the optimal coarse model design xc
*

Step 3 set xf
(1) = xc

*

Step 4 if derivatives exist execute GPE 

otherwise, execute the traditional PE with  = 0

Step 5 initialize the mapping matrix BPSM

Step 6 stop if  
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Proposed PSM/GPE Algorithm (continued)

Step 7 evaluate h(j) using  

Step 8 find the next xf 
( j+1)

Step 9 perform GPE or PE as in Step 4

Step 10 if derivatives exist obtain BPSM ( j) using

otherwise update BPSM ( j) using a Broyden formula
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Proposed PSM/GPE Algorithm (continued)

Step 11 set j =j+1 and go to Step 6

the result is the solution       and mapping matrix BPSM
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A Two-section 10:1 Capacitively-loaded Impedance Transformer

(Bakr et al. 2000)

fine model

coarse model

specifications
S11 0.50  for  0.5 GHz  w 1.5 GHz
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Optimization of the Impedance Transformer 

consider xc
PSM = [L1 L2]

T while xf
s = [Z1 Z2]

T kept fixed at the 

optimal solution during the PE 

exact adjoint sensitivity analysis gives Jc and Jf

exact derivatives to update mapping

the final mapping is
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Optimization of the Impedance Transformer (continued)

initial and final designs
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parameter xf
(0) xf

(1)

L1 1.0 0.9111

L2 1.0 0.8082

Z1 2.2362 2.2371

Z2 4.4723 4.4708

L1 and L2 are normalized lengths

Z1 and Z2 are in ohm



Optimization of the Impedance Transformer (continued)

initial coarse model (target) response(-)  

initial fine model response (•)
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Optimization of the Impedance Transformer (continued)

initial coarse model (target) response (-)  

final fine model response (•)
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H = 25 mil, W0 = 25 mil, 

er = 9.4 (alumina)

the design parameters are 

xf = [W1 W2 L0 L1 L2] 
T

specifications

|S21|  0.05 for 9.3 GHz  w  10.7 GHz

|S21|  0.9 for w  8 GHz and w  12 GHz 

Bandstop Microstrip Filter with Quarter-Wave Open Stubs

(Bakr et al., 2000)



Bandstop Microstrip Filter: Fine and Coarse Models

fine model:

Sonnet’s em with high resolution grid
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1

2

coarse model:

OSA90/hope ideal transmission line 

sections and empirical formulas
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Optimization of the Bandstop Filter

during PE we consider xc
PSM = [L1 L2]

T while xf
s = [W1 W2 L0]

T are 

held fixed  

finite differences estimate the fine and coarse Jacobians  

use hybrid approach to update mapping

the final mapping is
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Optimization of the Bandstop Filter (continued)

initial and final designs
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parameter xf
(0) xf

(5)

W1 4.560 7.329

W2 9.351 10.672

L0 107.80 109.24

L1 111.03 115.53

L2 108.75 111.28

all values are in mils 



Optimization of the Bandstop Filter (continued)

initial coarse model OSA90 response (-) 

initial fine response em (•)
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Optimization of the Bandstop Filter (continued)

initial coarse model OSA90 response (-)

final fine response em (•)
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Optimization of the Bandstop Filter (continued)

||xc – xc
*||2 versus iteration for the bandstop microstrip filter
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Original Rosenbrock Function (Coarse Model)

Shifted Rosenbrock Function (Fine Model) 
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Original Rosenbrock Function (Coarse Model Contour Plot)
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Shifted Rosenbrock Function Results
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Transformed Rosenbrock Function (Fine Model)

linear transformation of the original Rosenbrock function
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Transformed Rosenbrock Function Final Results
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Transformed Rosenbrock Function Final Results (continued)
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new Aggressive Space Mapping techniques

Gradient Parameter Extraction (GPE) exploiting

available Jacobian (exact or approximate)

Partial Space Mapping (PSM) with reduced set

of optimization variables in the PE phase

consideration of mapping updates

available Jacobians can be used to build the mapping
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Conclusions
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Mapping Update By Constraining B

(Bakr et al., 2000)

to constrain the mapping matrix to be close to I

where  is a weighting factor, ei and bi are the ith columns of E and B

analytical solution is
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