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Introduction

using an accurate model (fine model), e.g., full wave EM simulator,
Inside the optimization loop could be prohibitive (CPU time)

Comsmine)
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Introduction

using simpler (less accurate but fast), e.g., circuit simulator, model
Inside the optimization loop is more appropriate and practical

optimizer —

optimization
loop
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The Space Mapping Concept
(Bandler et al., 1994-)

X fine Ry (X¢) Xc coarse R.(Xc)
—> —> —>
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The Space Mapping Concept
(Bandler et al., 1994-) validation

space

mapping

optimization
space
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Jacobian-Space Mapping Relationship
(Bakr et al., 1999)

through PE we match the responses
R (X¢) = R (P(X4))

by differentiation

T T T
R | (erRT) (ox!

Xt | OX. | | OX;
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Jacobian-Space Mapping Relationship
(Bakr et al., 1999)

given coarse model Jacobian J, and space mapping matrix B
we estimate

J(x;)=J . (x,)B

given J, and J; we estimate (least squares)

o qT -1 4T
B~y )y'JlJ,
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Gradient Parameter Extraction (GPE)
(Bandler et al., 2002)

at the jth iteration

v =argmin |[e; de] - e, 1|, 220

where A is a weighting factor and E = [e, e, ... e ]

eO = Rf (ng))_ RC(XC)
E=J f (Xg‘j))_‘]c(xc)B
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Mapping Update Using Exact Derivatives

BY =(JV" Jcm)-l J" J}j)
Mapping Update Using Hybrid Approach
finite difference initialization used

BO = ) g
then update using Broyden formula

Mapping Update By Constraining B
(Bakr et al., 2000)

B=J. J. +n°1)"'(J.J, +n°1)
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Notation
(Bandler et al., 1995)

FU) = x(D _y”

C

(1) _ y(J+1) (J)

BWRM — _ )
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Proposed Algorithm (Bandler et al., 2002)

Stepl setj=1, B =1 forthe PE process

Step 2 obtain the optimal coarse model design x.
Step 3 set x V= x_*

Step 4 if derivatives exist execute GPE
otherwise, execute the traditional PE with A =0

Step 5 initialize the mapping matrix B exploiting derivatives

Step 6 stop If

Hf(j)u < & orHR}j) ~-R|<e,
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Proposed Algorithm (continued)

Step 7 evaluate h®) using quasi-Newton step
BYRY) = _f(j)

Step 8 find the next x, U*D)

Step 9 perform GPE or PE as in Step 4

Step 10 if derivatives exist obtain B (1) using
BY =( J(Em Jc(j))—l Jéj)T J}j)

otherwise update B (Y using a Broyden formula
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Proposed Algorithm (continued)

Step 11 set j =j+1 and go to Step 6 [Pl

the result is the solution X; and mapping matrix B
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Original Rosenbrock Function (Coarse Model)
(Bandler et al., 1999)

RC(XC) = 1OO(X2 - X12)2 +(1- X1)2
X, | . |10

and X, =
X, 1.0

where X, =

Shifted Rosenbrock Function (Fine Model)
(Bandler et al., 1999)

2
R, (X;) =100((x, +0,) — (X, +,)?) +A— (X, +a,))
X | [a ]| [-02 . [1.2]
where X, = , = hence X; =
X, a,| | 0.2 0.8
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Original Rosenbrock Function (Coarse Model Contour Plot)
(Bandler et al., 1999)
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Shifted Rosenbrock Function (Bandler et al., 2002)
Single point PE (SPE): nonuniqueness exists [Pl
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Shifted Rosenbrock Function (Bandler et al., 2002)
Gradient PE (1st iteration)

C

o {0.8
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Shifted Rosenbrock Function (Bandler et al., 2002)
Gradient PE (2nd iteration)

o _[L0]
° 71,0
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Shifted Rosenbrock Function Results
(Bandler et al., 2002)

(1.0 (1.0 31 4
0 10] 77 |10 °%
(0.8] [-0.2 {1.0 0.0} 02 | [1.2]
1 12| | 02 | [00 10]|-02] |08 O

1.0] [0
10/ |0
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Transformed Rosenbrock Function (Fine Model)
(Bandler et al., 2002)

linear transformation of the original Rosenbrock function

R, (X,) =100(u, ~u2)* +(1-u,)’

u | [1.1 -02 —-0.3]
where U = = X, +
u,| (0.2 0.9 | 0.3
. [1.2718447

0.4951456
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Transformed Rosenbrock Function (Bandler et al., 2002)

Single point PE (SPE): nonuniqueness exists

2
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Transformed Rosenbrock Function (Bandler et al., 2002)
GPE (1st PE iteration)
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Transformed Rosenbrock Function (Bandler et al., 2002)
GPE (2nd PE iteration)
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Transformed Rosenbrock Function (Bandler et al., 2002)
GPE (3rd PE iteration)
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Transformed Rosenbrock Function (Bandler et al., 2002)
GPE (4th PE iteration)
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Transformed Rosenbrock Function (Bandler et al., 2002)
GPE (5th and 6th PE iteration)
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Transformed Rosenbrock Results (Bandler et al., 2002) [Pl

iteration ~ xV £ (J) B h() x (1 R,
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Transformed Rosenbrock Results (Bandler et al., 2002)
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Bandstop Microstrip Filter with Quarter-Wave Open Stubs

(Bakr et al., 2000) H = 25 mil. W, = 25 mil,

& = 9.4 (alumina)

the design parameters are
Xe=[Wy W, LoLy L] T

‘A L‘
e L

pecifications

S,,] £0.05 for 9.3 GHz < @ <10.7 GHz
1S5,/ = 0.9 for <8 GHz and w > 12 GHz



Simulation Optimization Systems Research Laboratory @
@ McMaster University OAF}F%QAI;EE

Bandstop Microstrip Filter: Fine and Coarse Models
(Bakr et al., 2000)

fine model: coarse model:

Sonnet’s em™ with high resolution grid ~ OSA90/hope™ ideal transmission line

sections and empirical formulas Eis

(‘;ONNET®
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Optimization of the Bandstop Filter
(Bandler et al., 2002)

finite differences estimate the fine and coarse Jacobians
use hybrid approach to update mapping

the final mapping is

[ 0532 -0.037 0.026 0.017 -0.006
—-0.051 0.543 0.022 -0.032 0.026

B=| 0415 0251 1024 0.0/3 0.011

0.169 -0.001 -0.022 0.963 0.008

| —0.213 -0.003 -0.045 -0.052 0.938 |
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Optimization of the Bandstop Filter (continued)

(Bandler et al., 2002)

Initial and final designs

Parameter X0 X )
W, 4.560 8.7464
W, 9.351 19.623
L, 107.80 97.206
L, 111.03 116.13
L 108.75 113.99

N

All values are in mils
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Optimization of the Bandstop Filter (Bandler et al., 2002)

Initial coarse model OSA90™ response (—)
Initial fine response em™ (o)

|S21 in dB
S
——
()
T ——
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Optimization of the Bandstop Filter (Bandler et al., 2002)

Initial coarse model OSA90™ response (-)
final fine response em™ (e)

N
’ .

5 7 9 11 13 15
frequency (GHz)

|821| in dB
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Optimization of the Bandstop Filter (Bandler et al., 2002)

IX. — X. ||, versus iteration for the bandstop microstrip filter
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Conclusions

new Aggressive Space Mapping techniques

Gradient Parameter Extraction (GPE) exploiting
available Jacobians (exact or approximate)

consideration of mapping updates

available Jacobians can be used to build the mapping
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Mapping Update By Constraining B
(Bakr et al., 2000)

to constrain the mapping matrix to be close to |
. 2
B =argmin ” [e] --- e nAb/ ---nAbf]Tuz
where 77 is a weighting factor, e; and Ab; are the ith columns of E and AB

E=J,-J.B
AB=B-1

analytical solution is

B=J.J, +n° D)y (J.J,+n’I)
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