Electrical and Computer Engineering 711

COMPUTER-AIDED DESIGN

Instructor:	Dr. J.W. Bandler
Recommended Texts:	Current publications and software manuals. (There will be a charge to cover printing costs).
Prerequisites:	Undergraduate level background in numerical methods of analysis and optimization and permission of the instructor. Students must be familiar with C, C++, Matlab and Spice.
<u>Course Objectives</u> :	To give the student an introduction to and hands on experience with the state-of-the-art in CAD methodology and software, emphasizing techniques for statistical design and optimization of RF, wireless and microwave circuits. To cover practical aspects of nonlinear optimization with applications in CAE: design of engineering devices, circuits and systems.
<u>Course Outline</u> :	 Modern, user-friendly optimization techniques. General formulation of design problems. Analysis of linear and nonlinear circuits. Effective use of public domain and commercial simulators. Small- and large-change sensitivity evaluation. Design centering. Tolerance assignment. Postproduction tuning. Performance driven, yield driven and cost driven design. Optimization approaches to modeling of active devices using measured data. Practical implementation of least squares, least pth and minimax objectives. Statistical design centering, yield optimization and parameter extraction. The space mapping and surrogate modeling concepts in engineering modeling and optimization. Use of artificial neural networks in device modeling and circuit design.
Hardware/Software:	Projects may be carried out on workstations and PCs. Software systems available to students may include OSA90/hope, Agilent ADS, HFSS, Agilent Momentum, NeuroModeler and Sonnet.
Style:	Lectures, seminars, laboratory and private study.
Evaluation:	Students will solve problems and make oral presentations. Each student will carry out a project and write a final report. Use of industrially relevant data and design specifications is encouraged.
Weighting:	Assignments 15%, Oral Presentations 15%, Final Report 70%.