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SUMMARY

A number of recently proposed and implemented
objective function formulations for circuit
optimization are reviewed. The emphasis is on
formulations which can allow explicit and implicit
constraints on the circuit parameters and
responses to be taken into account. The formula-
tions considered include the ones used by Bandler
and Macdonald; Waren, Lasdon and Suchman; Ishizaki
and Watanabe; and Temes and Zai. They can all be
used in the computer-aided optimization of
circuits for which the objective is to try to
minimize the maximum deviation of some response
from a desired ideal response specification.

INTRODUCTION

In the author's experience from numerous
discussions with both students and practicing
engineers, a difficulty often encountered in the
automatic optimization of circuits by computer is
the selection of a suitable objective function.
Weighted least squares types of objective function
seem to be rather popular, possibly because least
squares approximation techniques are more widely
documented and because they are relatively easy to
implement. For many circuit optimization problems
least squares solutions may not provide the most
desirable responses. A minimax solution, i.e.,
one in which the maximum deviation of the response
from an ideal response specification has been
minimized, might be preferred.

In this context, a number of recently
proposed and implemented objective function formu-
lations are presented and discussed. The emphasis
is on formulations which can allow explicit and
implicit constraints on the circuit parameters and
responses to be taken into account. The formula-
tions considered include the ones used by Bandler
and Macdonald [1]; Waren, Lasdon and Suchman [2];
Ishizaki and Watanabe [3]; and Temes and Zai [4].

DIRECT MINIMAX FORMULATION

An ideal objective for network optimization
is
minimize U
where max
U =10(¢,9) = [wz,wu][wu(F—su)" wy (F-5)) ]
6D)
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and where
F = F(¢,¥) is the response function
¢ represents the network parameters

Y is an independent variable, e.g.
frequency or time

Su = Su(w) is a desired upper response
specification

S’Q = Sz(w) is a desired lower response
specification

W, =W (V) is a weighting factor for Su

<
]

0 wz(w) is a weighting factor for S

Y, is the upper bound on ¥

Vg is the lower bound on Y.
This formulation is illustrated by Fig. 1.
Fig. 1(a) shows a response function satisfying
arbitrary specifications; Fig. 1(b) shows a res-
ponse function failing to satisfy a bandpass fil-
ter specification; Fig. 1(c) shows a response
function just satisfying a possible amplifier
specification. F will often be expressible as a
continuous function of ¢ and Y. But So(P), S, V),
wo (P) and w,(P) are likely to be discontinuous.

The following restrictions are imposed:

5,25, )
LR 0 (3)
wy >0 - 4)

Under these conditions w,(F-S,) and -wg(F-Sg)are
both positive when the specifications are not met;
they are zero when the specifications are just
met; and they are negative when the specifications
are exceeded., The objective is, therefore, to
minimize the maximum (weighted) amount by which
the network response fails to meet the specifica-
tions; or to maximize the minimum amount by which
the network response exceeds the specifications.
Note the special case when

Su = Sz =S (5)

;nd
Ya T Yy

which reduces (1) to

=w (6)

max

U= [wg,wu]”W(F'sm . N

This form may be recognized as the more conven=
tional Chebyshev type of objective.
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The direct minimax formulation, the optimum
of which represents the best possible attempt at
satisfying the design specifications within the
eonstraints of the particular problem, appears to
have received very little attention in the lit-
erature on circuit optimization. This is chiefly
due to the fact that discontinuous derivatives
are generated in the response hypersurface when
the maximum deviation jumps abruptly from one
point on the Y-axis to another, and that multi-
dimensional optimization methods which deal
effectively with such problems are rather scarce
[5]. 1In spite of these difficulties, some success
with objectives in the form of (7) has been
reported [1]. But it is felt that considerable
research into methods for dealing with objectives
in the form of (1) remains to be done.

FORMULATION IN TERMS OF INEQUALITY CONSTRAINTS

A less direct formulation than the previous
one, but one which seems to have provided consid-
erable success, is the formulation in terms of
inequality constraints on the network response
[2,3]. The problem is

minimize U
subject to

Uz (F(9) -8 ) 1€1 (8)

U > _wli(Fi(Q) - SZi) 1611 9)
and other constraints, e.g., upper and lower
bounds on the parameters, where U is now an
additional independent variable and where the sub-
script i refers to quantities (already defined)
evaluated at discrete values of Y which form the
set {Y;} in the interval [yg,Py]. The index sets
I, and Ig, which are not necessarily disjoint,
contain those values of i which refer to the upper
and lower specifications, respectively. Thus, in
the case of Fig. 1(a), the index set I, and Iy
could be identical. For Fig. 1(b), the set I,
would refer to the passband and the set Iy to the
stopbands. In Fig. 1(c), there might be an
intersection between Iy and Ij.

At a minimum at least one of the constraints
(8) or (9) must be an equality otherwise U could
be further reduced without any violation of the
constraints. If U < 0 (where U is the minimum
value of U) then the minimum amount by which the
network response exceeds the specifications has
been maximized. If U > 0 then the maximum amount
by which the network response fails to meet the
specifications has been minimized. It is clear
that both this and the previous formulations have
ultimately similar objectives. Indeed, if the
sets I, and Iy are infinite then the optimum solu-
tions given by both formulations may be identical.
Not surprisingly such a problem may be described
as one which has an infinite number of constraints.

A special case again arises when

Sui = Sp1 = 54 10

Yui T Yei T Mi an

1 =T, -1 (12)
which reduces (8) and (9) to

U v (F () - 5) et (13)

U2 - w (F () - 8)) (14)

The formulation in terms of inequality con-
straints is equivalent to a nonlinear programming
problem. Two methods of solution have so far been
proposed. One of these, described by Waren,
Lasdon and Suchman [2], involves the transforma-
tion of the constrained objective into a penalized
unconstrained objective. A sequence of uncon-
strained minimizations follows, preferably using
an efficient quadratically convergent method, the
minimum of which gltimately approaches the con-
strained minimum U. The other method, described
by Ishizaki and Watanabe [3], reduces the non-
linear programming problem at a particular stage
to a linear programming problem by linearization
of Fj(9). The sequence of linear programming
problems are each solved by the simplex method.

WEIGHTING FACTORS

Essentially, the task of weighting factors is
to emphasize or deemphasize various parts of the
response to suit the designer's requirements. For
example, if one of the factors w, or wyp is unity
and the other very much greater than unity then if
the specifications are not satisfied, a great deal
of effort will be devoted to forcing the response
associated with the large weighting factor to
meeting the specifications at the expense of the
rest of the response. Once the specifications are
satisfied, then effort is quickly switched to the
rest of the response while the response associated
with the large weighting factor is virtually left
alone. In this way, once certain parts of the
network response reach acceptable levels they are
effectively maintained at those levels while
further effort is spent on improving other parts.

LEAST PTH APPROXIMATION

A frequently employed class of objective
functions may be written in the generalized form

b P_ 3 P
U=, =] lw @) - sp= ] le (@]
i=1 i=1

(15)

where Y represents the sample points and where the
subscript i refers to quantities evaluated at the
sample point Y;. Thus, the objective is
essentially to minimize the sum of the magnitudes
raised to some power p of the weighted deviations
e;(¢) of the response from a desired response over
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a set of sample points {y;}. p may, in the
present case, by any positive integer.

The sample points are commonly spaced uni-
formly along the Y-axis in the interval [{g,¥,].
If the objective is effectively to minimize the
area under a curve then sufficient sample points
must be used to ensure that (15) is a good
approximation to the area. However, it should be
remembered that function evaluations are often by
far the most time consuming parts of an optimiza-
tion process. So the number of sample points
should be carefully chosen for the particular
problem under consideration. These arguments
apply, of course, to any formulation which
involves sampling.

With p = 1, (15) represents the area under
the deviation magnitude curve if sufficient
sample points are used. With p 2 we have a
least squares type of formulation. Obviously,
the higher the value of p the more emphasis will
be given to those deviations which are largest.
So if the requirement is to concentrate more on
minimizing the maximum deviation a sufficiently
large value of p must be chosen. The basis of
such a formulation is the fact that

v 1
max - A ______1______“ P ;
[wl,wu]”e@"““ ;13[‘%' ‘P;J le(s,) dw}
Yy
(16)

when |e(9,w)| is defined in the interval [y ,wu].
In terms of a sampled response deviation thé
corresponding statement is

1
lim [Jle, () [P17 .

pro i

max{lei(§)|] = 17)
i

In practice, values of p from 4 to 10 may
provide an adequate approximation for engineering
purposes to the ideal objective. A good choice
of the weighting factors w; will also assist in
emphasizing or deemphasizing parts of the res-
ponse deviation. It may also be found advan-
tageous to switch objective functions, number of
sample points or weighting factors after any com-
plete optimization if the optimum is unsatisfact-
ory. For example, one may optimize with the
weighting factors set to unity and with p = 2.

If the maximum deviation is larger than desired,
one could select appropriate scale factors and/or
a higher value of p and try again from the
previous 'optimum'.
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The contribution by Temes and Zai [4], who
have employed a least pth formulation, is their
extension of the familiar least squares method
of approximation to a more general least pth
method.

COMBINED OBJECTIVES

The objective function can consist of
several objectives. Indeed, the form of (1) and
(15) suggest such a possibility. For example, we
could have a linear combination

U= ulUl + GZUZ + ...
where Uy, Uy, ... could take the form of (15).
For an amplifier a compromise might have to be
reached between gain and noise figure; another
example is the problem of approximating the input
resistance and reactance of a model to experi-
mental data. The factors Oy, Oj, ... would then
be given values commensurate with the importance
of Uy, Ugy wves respectively.

(18)

CONCLUSIONS

A brief review of some recently proposed
objective function formulations for computer-aided
circuit optimization has been presented. The
formulations aim at reducing the maximum deviation
of the circuit response from ideal response
specifications, and can, therefore, result in more
desirable optimum responses.
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