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Non-linear minimax optimization as a sequence of least pth
optimization with finite values of p

C. CHARALAMBOUSYt and J. W. BANDLER]

Following developments in non-linear least pth optimization by the authors it is
possible to derive two new methods of non-linear minimax optimization. Unlike
the Polya algorithm in which a sequence of least pth optimizations as p— oo is taken
our methods do not require the value of p to tend to infinity. Instead we construct
a sequence of least pth optimization problems with a finite value of p. It is shown
that this sequence will converge to a minimax solution. Two interesting minimax
problems were constructed which illustrate some of the theoretical ideas. Further
numerical evidence is presented on the modelling of a fourth-order system by a
second-order model with values of p varying between 2 and 10 000.

1. Introduction

Various algorithms have been proposed for solving the discrete non-linear
minimax problem, some of the most relevant of which are due to Waren et al.
(1967), Osborne and Watson (1969), Bandler et al. (1972) and Bandler and
Charalambous (1972).

The first method transforms the non-linear minimax optimization problem
into a non-linear programming problem and solves it by well-established
methods such as the one by Fiacco and McCormick (1964). The second method
deals with minimax formulations by following two steps—a linear programming
part which provides a given step in the parameter space, followed by a linear
search along the direction of the step. The third method uses gradient informa-
tion of one or more of the functions to get a downhill direction by solving a
suitable linear programming problem. A linear search follows to find the
minimum in that direction, and the procedure is repeated. The last method
is a generalization of the Polya algorithm (Rice 1969). A pth norm-like
function is formed which has the property that, if p= co, the function is equal
to the maximum of the set of functions which we want to minimize.

In this paper two new algorithms are presented in which a sequence of least
pth optimization problems is constructed with a constant value of p in the range
l<p<oo. Itisshown that this sequence will converge to a minimax solution.
Numerical evidence is presented to show that the scheme works well in practice.

2. The problem
Consider a system of m real non-linear functions

f), el (1)

where & 2[¢; ¢y ... $;]T is a k-dimensional column vector containing the
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k adjustable parameters and I £{1, 2, ..., m}. Let
M(P)= max fi(d) (2)

The problem of minimax optimization of system (1) consists of finding a point
& such that M ()< M () for all points ¢ at least in the neighbourhood of cT>

2.1. Assumptions

(@) We assume that M (¢) is bounded below, i.e. we assume the existence

of greatest lower bound Mf(c];) such that M()> Mf(.:i)) > — 00,

(b) The set S £ {db|M(d)<c}is bounded for every finite value of ¢. This
ensures that any local minimum is located at a finite point.

(¢) The functions f;(d) for i€l belong to class C! (once continuously dif-
ferentiable).

2.2. Definitions

Consider the following objective function

. —&\a]1/e
Uld, )= M(b, f)[ » (”4’) f)] for M(d, £) %0

€K m
=0 for M(d, {)=0 (3)
where
M, £)2 max (i) —€)=M(P)—¢ (4)
q=p xsign M(, £) (5)

where p has a constant value in the range 1 <p< 0.

{J(cp, L[ (P)— >0, iel} it M(, §)>0} |
- (6

1 if M(db, £)<0

The objective function given in (3) is a generalization of the usual least pth
objective function. Under the assumptions (@) and (b), the continuity of
f:(b) for el and because U(d, &)= M(d, £) (see Lemmas 3.1 and 3.4) the
objective function U(¢, £) is continuous and has a minimum which is located
at a finite point. Also, due to assumption (¢), U(d, £) has continuous first
partial derivatives except when both M(, §)=0 and two or more of the
functions (f;(b)— &) for i€l are equal to zero.

The reason why all the functions (f;(d)— &) for €K are normalized with
respect to their maximum is to avoid numerical difficulties arising from the
use of large values of p.

The symbols € and 7 will be used to denote small positive numbers.

3. The new algorithms
3.1. Algorithm 1

(1) Assume a starting point ¢° is given ; set £1=min [0, M($?)], r=1 and
select a value of p> 1.

(2) Minimize with respect to ¢ the objective function U(¢, £) for é=¢.
Let §" denote the optimum parameter vector of U(d, £) at the rth optimization.
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(3) Set 5
= My(d7) (7)

(4) Convergence criterion : if |{+1—£r| <z stop; otherwise set r=r+1
and go to 2.

3.2. Algorithm 2

(1) As in Algorithm 1.
(2) As in Algorithm 1.
(3) If M(p", £&) <0 remain with Algorithm 1; otherwise set

§r+1 — fr'i' )\TM(JDT, {:r)

= (1= A€+ N M (D7) (8)
where
0<XN<l1 (9)
(4) As in Algorithm 1.

3.3. Comments

It is important to note that for both algorithms the value of p is kept
constant in the range 1 < p < 0o, unlike the algorithm presented by Bandler and
Charalambous (1972, 1973) where the value of p must be very large. Algorithm
2 is different from Algorithm 1 if M () > 0, otherwise it is the same. The main
difference is that in the Algorithm 1 we try to push the maximum away from
the level & at the rth iteration (this causes M (J;", &) <0, and &l < ¢rforr > 2),
while in Algorithm 2 we try to predict the value of M () by increasing the
value of & from zero appropriately (this causes, M(’, &) >0, and & +1> ¢ as
long as we stay with Algorithm 2). Due to the fact that the minimax solution
of the set of functions f;(¢) for tel and f,(¢)+ B for icl does not change when
B is constant it will be possible to use Algorithm 2 even when M ()< 0 but we
have to raise all the f,(¢) for icl by an amount B> | My(d)|.

The first step of Algorithm 1 ({'=min [0, M($°)]) could be modified to
&= M($%. A reason for not modifying it is the following. In engineering
problems (e.g. filter design (Bandler and Charalambous 1972)) the sign of
M,(¢) indicates whether a particular structure can satisfy certain design
specifications. That is, if,

> 0 the specifications are violated
M(d)q =0 the specifications are just met
< 0 the specifications are satisfied

By using ¢'=min [0, M,(°)] the first optimum of U(d, &) (i.e. c];l) yields the
above.
3.4. Convergence proofs for Algorithm 1
Lemma 3.1
If y,> 0 for iel and p>1, then

m= P min g, <( Y y7)" 4P < min g,
el vel iel

The proof is simple and is omitted.
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Lemma 3.2

Let y, for i€l be a set of real numbers and > max y;. Then
i€l

Up)=—( Y (x—y)™)""»), p>1

1€l

decreases as x increases and, moreover, it is convex.
Proof

U
d (x)= (Y (@—y,)?)"»1 Y (x—y)P1<0 for x> maxy,
dx fet fet iel

Note that the maximum value of U(x) is zero.
Let @ and x® be two distinct points such that @), 2® > max y,; and
0< A< 1. Then, del

—U((1 =20+ @) =( ¥ ((1-Na® + @ —y,)-P)-a/p)

tel

=( T (1= NEO—g) + Na®—y,))?)-¢»)

el

>(1=N( T (@0 —y;)»)-w»
1€l
A Y, @®—y)P)0w)

vel

See Hardy et al. (1934) for the last inequality. Therefore, convexity follows.

Lemma 3.3
For r>2, |U(&", &)| > |U@d+, ¢+1)|.

Proof
For r> 2 we have M (4;", £ < 0 and therefore ¢= —p. In this case

U@, €)== T (€ =f(N)) 0w

<U(dr, &)
(because J:’ is the optimum parameter vector of U(d, £) with respect to the
level £&)
< U(J)rﬂ’ grin)

because £&t1< ¢ and due to Lemma 3.2.

Theorem 3.1
|U(<f>r, £n)|—0 as r—oo0.

Proof
Forr>=2

|U@", &) =( T (&—fr)-»)-wm

1€l

< min (&~ /(§") =&~ max f($")

1el
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(from Lemma 3.1)

—gr— g

Therefore, .

lim Y U, ¢)] < lim (£2— £+

1—>0 r=2 =00

< &=M()
Therefore,
lim |U(¢", é7)|—0 (10)

Theorem 3.2

~

As r—00, My(")—M(d).

Proof
Assume that as r— o0, Jl[f(o:l;’)—»Lf > Mf(qu). We must show that L; = MA:E).
Assume Ly, > M f(ci)). Because M(¢) is continuous it is possible to find a point
& such that .
Mi(d) < My(p) <Ly (11)
In other words
fi($)_Lf< 0: el

Since
U, &)=0 asr—ow
lim ér=L;
r—>00
But

U, Li)=—( Y (Li—fi(@)?)~P<0

el

This contradicts the fact that cf;’ minimizes U for r— oo with respect to L;.

Theorem 3.3

As r—o0, the necessary conditions for a minimax optimum are satisfied
(Bandler 1971), that is,

Y, uiVii$=)=0 (12 a)
“ u; >0, et (12 b)
2 u; >0 (12 ¢)
where « 5
J2ilf(d") = M=), iel} (12 d)
and
o 0 o T
Va| — — .. — 13
[aqsl e )
Proof

Since a necessary condition that a point be a local minimum of an uncon-
strained function is that the first partial derivatives vanish then for 7> 2,

Ur, &)=( Y (&) 2)-Wer1 Y (& —f (") P-Vf()

el 1€l
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=4 ¥ (-f—-_—:’;@)' Vi)

&\ &

A
o[ 5 (8

Since £"—§= min (§"—f;( d) ), A4 #0 and therefore,

iel
E— 1)\ PG e
Z ( g,«_gﬂ_l ) sz(cb )“‘

el

. é:r__é‘:r-i-l )p-l—l -
& ”(8—&(&) '

Y uiVi(dr)=0

el

where

Let

then

Note that 0 < <1 for tel and at least one of them is equal to one.

w,= lim p;, el
r—>00

then it is clear from Theorem 3.1 that lim (&7 — £+1)—0, therefore

r—>w
=0, ¢J
Ug
{ >0, it
and
Y u;>0
Therefore, =

Y, w V)=

ie]
3.5. Convergence proofs for Algorithm 2
Lemma 3.4

Let y, for icl be a set of real numbers such that max y,> 0, then

el

max y; <( Y yP)V'P<m'? max y,, p>1
1el el 1el
where

La{i|y;>0, iel}
'The proof is simple and is omitted.

vLemma 3.5
Let U(dr, &), U(dr, &+1)>0. Then

U1, &)< U, &)
Proof

(15)

(16)

(17)

Let

(18)

(19)

(20)

(21)

For the case cons1dered M ¢’ N>0, M (<]>'+1 &+1)>0 and therefore

g=p: In this case
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U@, en=( ¥ () —¢ep)r

ieJ(§ &)
( Z f ¢r §r+1 p\1/p
teJ(¢", £7)
(the inequality is due to the fact that {+1> ¢ and J (cl;’, frthcJ (cf:', &)
= ( 2 f ¢r+1 — &l )1/17

ieJ (g, ¢rn)

\%

(because J)H'l is the optimum parameter vector with respect to the level £+1).
- U(Z‘)H-l, gret

Theorem 3.4
U(dr, &)—0 as r—o0.

Proof
Here all we have to consider is the case in which the A values are such that
U(d, ¢)>0, because if U(", £) <0, the proof is given in Theorem 3.2.
Let A=min A", then from Lemma 3.4
U(d?, £)<mV» M, where My =My (")
U(J)z’ Ey<mV/r(M2— XML <mVp(M2— M)
Similarly,
U(dr, & <mtP(Mg—X1—=A)2Md— ... —AM 1)
Therefore,
Y U(r, &) <mVp(My+ (1= M1+ o+ (1= Ar3M 3
~
+ (1= 2M 2+ (1= A1 M

Due to the fact that ¢ < ]llf(cl;) and because of Lemma 3.5, M, M2, ..., M7 <
a< oo,

lim Y U §i)<m1/1’§< 0 (22)
i—0 r=1
Therefore,
lim U(dr, £&r)—0 (23)
r—00
Theorem 3.5

As r—00, My(d)—M ().

Proof
The proof is similar to that of Theorem 3.2.

Theorem 3.6

As r— oo the necessary conditions for a minimax optimum are satisfied.
The proof is similar to that of Theorem 3.3.

3.6. Hxamples
Two problems are going to be considered to illustrate some of the theoretical
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Figure 1. Contours of M(¢) for Problem 1.

Figure 2. Contours of U(d, £) for Problem 1 with £=0.
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ideas. To overcome the difficulty of discontinuous derivatives which might
arise when M (¢, £) =0, we replace step 3 of Algorithm 1 by

&l = M (") + e (24)
where € is a small number.

Problem 1

Minimize the maximum of the following three functions,

f1=¢'14+¢22
fo=(2—¢1)%+(2—¢,)* (25)
f3=2exp (— 1+ ¢5)

The optimum minimax value of 2 occurs at ¢, =¢,=1. This point satisfies
the necessary conditions for a minimax optimum. Figure 1 shows contours
for this problem.

Starting from the point [2 2]T (M (°)=20) and using p=2 throughout
Algorithm 1 in conjunction with the Fletcher optimization subroutine (Fletcher
1970) generated the sequence shown in Table 1. Note that M (") asymptoti-
cally approaches the value 2 and that after seven steps our optimum agrees to
six significant figures with the minimax optimum. The value of € used is 10-8.

Steps (r) ¢ by M ()
1 1-01702 0-82055 2:35736
2 1-01129 0-97115 2-03608
3 1-00153 0-99654 2-00388
4 1-00017 0-99962 200042
5 1-00002 0-99996 2-00003
6 1-00000 0-99999 2-00001
7 1-00000 1-00000 2-00000

Table 1. Problem 1 using algorithm 1.

Figure 2 shows contours of U for p=2 and £=0. Figure 3 shows contours
for p=2 and §=2-3574+¢(=M(p')+¢) and Fig. 4 shows contours for p=2
and §=2-0361+¢(= Jlff(c\!')z) +e€).

The first three optima are shown in Fig. 1 as (D, @ and ), respectively.
The defined objective function (3) has the property of smoothing the minimax
contours. This can be seen from Figs. 2, 3 and 4 where the partial derivatives
of U are continuous (except when M =0 and two or more maxima are equal),
unlike the minimax contours which are discontinuous when two or more
maxima are equal.

Starting from the same point as in Algorithm 1 and using the same value
of p Algorithm 2 in conjunction with the Fletcher optimization subroutine
generated the sequence shown in Table 2. The value of A used throughout was
0-5. Observe that ¢ increases from zero and M;(") decreases and both of
them tend asymptotically to 2. Also, the optimum parameter vector tends
to [1 17T,
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#
Figure 3. Contours of U(d, £) for Problem 1 with §=2-3574 +e.

1.9

0 5 10 1.5

Tigure 4. Contours of U(d, £) for Problem 1 with £=2:0361+e.
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Steps () ¢ &y M($) g
1 101702 0-82055 23574 0
2 1-02148 0-88911 2.1916 1-1787
3 101481 0-94482 20840 1-6851
4 1-00705 0-97709 2.0323 1-8846
5 100280 0-99134 20118 19584
9 1-00005 0-99985 2-0002 19993

Table 2. Problem 1 using algorithm 2.

If A0 =[My(P)/M(P")]=2/2:3574=0-8484, in other words £2=M(p)=2,
then we reach the minimax optimum in two steps. This was verified with
Algorithm 2.

Problem 2
Find the minimax optimum of the following three functions,
fi= 1+ ¢5*
fo=(2— )2+ (2 ¢y)° (26)

fy=2exp (=1 + )

When ¢, = ¢, =1, f; =f, = f; =2 but this point is not a minimax optimum because
the necessary conditions for a minimax optimum are not satisfied. The
minimax optimum is defined by the functions f; and f, at ¢,=1-13904,

o

Figure 5. Contours of M(¢$) for Problem 2.
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Steps (r) & b M(PT)
1 1-24176 0-77401 2-07800
2 1-14118 0-89563 1-95721
3 1-13896 0-89953 1-95242
4 1-13904 0-89956 1-952233
5 1-13904 0-89956 1-952226
6 1-13904 0-89956 1-95222

Table 3. Problem 2 using algorithm 1.

Steps () ¢ b M($) &
1 124176 0-77401 207800 0
2 119897 0-82093 2.03184 1-03900
3 113557 0-88307 1-99477 153542
4 113153 0-89596 1-97314 176510
5 113561 0-89791 196177 186912
10 113898 0-89953 195239 195161

Table 4. Problem 2 using algorithm 2.

$,=0-89956, where f,=f,=1:95222 and f;=1-57408 (see Fig. 5). This point
satisfies the necessary conditions for a minimax optimum. Using both
algorithms this point was reached.

Tables 3 and 4 show the progress of Algorithms 1 and 2, respectively, from
the starting point [2 2]T. For both algorithms p=2 and e=108. For the
second algorithm A=0-5. From Table 3 it can be seen that after six steps
Algorithm 1 reaches the minimax optimum very accurately. It is also interest-
ing to note again from Table 4 how ¢” increases from zero and M ¢(¢p") decreases
asymptotically to M($). The value of p=2 and A=0-5 were chosen so as to
better illustrate the progress of the algorithms.

4. Example

Here we want to find a second-order model of a fourth-order system, when
the input to the system is an impulse, in the minimax sense. The transfer
function of the system is

(s+4)
= 27
G = D+ a5+ 9+ 5) (27)
and of the model it is
¢
— N 28
"=t p =)
Therefore, we want to approximate
— 2t
S(t) =55 exp (—t) + 5% exp (— 5t) _ﬂé—r) (3sin 26411 cos 2t)  (29)
by |
F(d, )=~ exp (—of) sin pt (30)
B p
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where S(t)=Z"1G(s), F(b, t)=F1H(db, s) and d =[x B c]T.
The problem was discretized into 51 uniformly spaced points in the time
interval 0 to 10 sec. Let

e(b) £ F(d, t;)—8(t;), el (31)

where I={1, 2, ..., 51}. Therefore, our aim is to find a point &) such that
max |e;(d)|< max |e(d)|. The minimax optimum is at
i€l i€l

[0-68442 +0-95409 0-12286]T

and the maximum value of the absolute error is 0-79471 x 10-2. Using both
the algorithms in conjunction with the optimization subroutine due to Fletcher,
starting from the point [1 1 1]T, and using the values p =2, 4, 6, 10, 100, 1000
and 10 000 individually the results shown in Tables 5, 6 and 7 were obtained.
Table 5 shows how many function evaluations are required for M(¢) to be

Parameters Starting point M(d°)
o 1-0
B 1-0 0-26289
c 1-0
Value of p Number of function evaluations for M,(¢) to reach
0-79471 x 102
2 213
4 161
6 166
10 142
100 187
1000 144
10 000 302
Average function 188
evaluations

Table 5. Results of algorithm 1.

Value of p Mt x 102 Myt x102 Mgt x 102 Malx 102 M3t x 102

2 1-2880 0-66348 0-38106 0-27946 0-00013

4 1-0194 0-72517 0-54438 0-47185 0-00779

6 0-92477 0-77198 0-62354 0-56909 0-01657

10 0-85921 0-79648 0-69289 0-65879 0-02840

100 0-79886 0-79438 0-78710 0-78646 0-04934
1000 0-79508 0-79466 0-79412 0-79385 0-05079
10 000 0-79474 0-79470 0-79464 0-79462 0-05090

Table 6. Values of M, M, ..., M.

equal to 0-79471 x 10~2 for different values of p by using Algorithm 1. Note
that a very small or a very large value of p takes relatively more function
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Parameters Starting point M%)
o 1-0
B 10 0-26289
c 1-0
Value of p Number of function evaluations for M,(¢) to reach
0.79471 x 102
2 159
4 188
6 157
10 143
100 184
1 000 148
10 000 289
Average function 182
evaluations

Table 7. Results of algorithm 2.

evaluations. Table 6 shows the values of M,*, M, ..., Ms' where
Myr={les|||es|>es]; |I—t|=1; i, lel}

for different values of p.

Table 7 shows the number of function evaluations for M () to be equal to
0-79471 x 102 for different values of p, by using Algorithm 2. The value of A
used was (M 1+ M2)/(2M,Y). As can be seen again, if p is very large the
convergence slows down. For both algorithms the value of p=10 was the
best. From the average function evaluations it can be seen that both
algorithms behave similarly.

5. Conclusions

Two new methods for non-linear minimax optimization are presented. The
new methods abandon the linear programming subproblem which many of the
other methods require. An advantage of these methods is that it is possible
to use very efficient gradient methods such as the recent minimization
algorithms by Fletcher (1970) and Charalambous (1973).

Recently, the authors have transformed the mnon-linear programming
problem into an unconstrained minimax problem which under certain condi-
tions has the same optimum as the original problem (Bandler and Charalambous
1974). The two methods presented can thus be used to solve the non-linear
programming problem, and also constrained minimax problems which may be
converted to the non-linear programming formulation.
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