
1:16 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, FEBRUARY 1976

[2] J. A. Kong, r‘ Reciprocity relationships for bianisotropic media, ”

Proc. IEEE (Lett. ), vol. 58, PP. 1966–1967, Dec. 1970.
[3] 1. V. Linden, “Some properties of Iossless bianisotropic media, ”

Pr’oc. IEEE (Lett. ), vol. 60, PP. 463–464, Apr. 1972.

[4] R. C. Costenand D. Adamson, “Three-dimensional derivation of the

electrodynamics jump conditions and momentum-energy laws at a

moving boundary, ” FVoc. IEEE, vol. 53, PP. 1181–1196, SePt. 1965.

[5] H. C. Chenand D. K. Cheng, “Constitutiver elations for a moving

anisotropic medium, ” Proc. IEEE (Lett. ), vol. 54, PP. 62–63, Jan.

1966.

[6] D. K. Chengand J.A. Kong, “Convariant descriptions of bianiso-

tropic media,’’ Proc.lEEE, vol. 56, pp.248–25l, Mar. 1968.

[7] I. V. Lindel, “Onthe definiteness of theconstitutive parameters of

a moving anisotropic medium, ” Proc. IEEE (Lett. ), vol. 60, PP.

638–639, May 1972.

[S] J. A. Arnaud and A. A. M. Saleh,” Theorems for bianisotropic

media, ” Proc. IEEE (Lett)., vol. 60, pp. 63%640, May 1972.

[9] J. A. Kong, “Theorems of bianisotropic media, ” Proc. lEE~. vol.

60, PP. 1036–1046, Sept. 1972.

[10] J. R. Collier and C. T. Tai, “Guided waves in moving media, ”

IEEE Trans. Microwave Theory Tech., vol. MTT-13, PP. 441–445,

JUIY 1965.

111] L.J. Du and R. T. Compton, Jr., “Cutoff phenomena for guided
waves in moving media, ” IEEE Trans. Microwave Theory Tech.,

VOI. MTT-14, pp. 358–363, Aug. 1966.

[12] P. Daly, “Guided waves in moving media, ” IEEE Trans. Micro-
wave Theory Tech. (Corresp. ), vol. MTT-15, PP.274–275, Apr. 1967.

[13] J. A. Kong and D. K. Cheng, “On guided waves in moving aniso-

tropic media, ” IEEE Trans. Microwave Theoru Tech., vol. MTT-

16, pp.99–103, Feb. 196S.

[14] K. Kurokawa, “Electromagnetic waves in waveguides with wall

impedance, ” IRE Trans. Microwave Theory Tech., vol. MTT-10,

PP.314–320, Sept. 1962.

[15] R. B. Dybdal, L. Peters, Jr., and W. H. Peake, ``Rectangular wave-
guides w-ithimpedance walls,’’ IEEE Trans. MicrowaCJe Theo?w Tech.,

[16]

[17]

[18]

vol. MTT-19, pp. 2–9, Jan. 1971.

V. H. Rumsey, “Reaction concept in electromagnetic theory, ”

Phys. Reti., vol. 94, PP. 1483–1491, 1954; also, errata, ibid., VO1. 95,

p. 1705, 1954.

R. F. Barrington, Time-Harmonic Electromagnetic Fields. New

York: McGraw-Hill, 1961, P. 118.

M. Kobayashi, “Comments on some properties of lossless bianiso-

tropic media” and ——, “On the definiteness of the constitutive

parameters of a moving anisotropic medium, ” to republished.

New Results in the Least pth

Approach to Minimax Design
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Absfracf—We present results of two general approaches for ob-

taining minimsx designs through a sequence of least pth approxima-

tions demonstrating increased efficiency over previous least pth

algorithms. Documented computer programs are available.

INTRODUCTION

This short paper demonstrates the acceleration of convergence to

minimax solutions by extrapolation on a sequence of least pth solu-

tions [1] with geometrically increasing values of p, and compares

the results with an efficient extension of work by Charalambous
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and Bandler [2], [3], in which a sequence of least pth solutions with

finite values of p are obtained in an effort to reach a minimax

solution. Documented computer programs are available [4], [5],

as well as the theoretical background [6]–[8].

THEORY

We minimize, with respect to + for given f and p >1, the func-

tion

IO, M(+,g) = o (1)

where

and

1

z c {1,2,..., rrz}, M(+,$) <0

K=

J4J{ilf, (41)-520, if I}, M(+,f) >0 (2)

and where @ A [I#II@””” +~]~ is the design parameter vector, and

.fl(o),.f2(+)f””” , f- (o) are m linear or nonlinear functions directly

related to the response error functions such that if kf~ (o) >0 the

specifications are violated and if M)(+) < 0 the specifications are

satisfied.

Charalambous has shown [6] that if we have u and @ such that

fiui=l, u~>O, i=l,2,...,m
~=~

then, if ~ ui ~i (~) is convex with respect to +,
~=~

where & is the minimax optimum which iB being sought,

U ~ [u1u2 ““ “%IT

(3)

(4)

and

v & [d/a41a/a42.. .a/adklT.

The conditions (3) are satisfied at each optimum point $ (p,f) for

a least pth objective function, yielding

where, asmming K contains all critical sample points,

vi

“== (6)

i a

(0, i$K. (7)

The first term of (5), under the stated conditions, is a lower bound

on Mf ( f). It is, at any least pth solution, an optimistic indication

of the ultimate minimax error to be expected for a particular design.
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THE $ ALGORITHM

An Implementation of Work by Charalambous [6]

~+’ is set to the lower bound from the rth optimization. p is kept

constant. We start at @ by setting :1 to an initial guess of a lower

bound and setting -g” < f’ to a margin for dkcarding all functions

~~ for which f~(~”) < P, which are considered unlikely to be active

at $. g is used as a level for dkcarding functions, so that

1’+1 = {i If;(k) ~ g).

The functions specifically req~ired for the least pth objective and

its gradients are successively reduced as the optimum is approached

enabling a saving of effort in gradient computations. The program,

called MINOPT [4], can also be restarted efficiently from any point

instead of having to repeat the entire process. Convergence of the

basic algorithm has been proved [6].

THE p ALGORITHM

An Implementation of Work by C’hu [8]

p.+lissettocp,, wherec > 1. gis kept constant. We let ~0’ = ~~,

and for r > 1

(8)

where no = min [r — l,n], @j’ signifies the jth-order estimate of ~

after r minima have been obtained, and n is the highest order of

extrapolation.

The next minimum is estimated by solving for n, ~ 1

(9)

for j = nO,. . .,1, using @.O’+~ = ~n,r. The next starting point is OO’+l.

We take 1’+’ = {i I M > q ) where ~ is preassigned and

(lo)

icK

\ o, i~K (11)

and K is chosen according to (2) with 1 set to 1’.

p is not increased when r = 1 in determining W. No extrapolation

can be made at this stage, so the starting point for the next minimiza-

tion is the solution to the first one. In the program, called FLOPT2

[5], past solutions may be retained for future runs permitting

extrapolation to be implemented immediately. Theoretical justifica-

tion of the algorithm has been demonstrated [7], [8].

EXAMPLES

The unconstrained minimization method throughout was a recent

quasi-Newton method [9], and the computer used wa:$ a CDC 6400.

We consider the same two starting points (leading to Problems 1

and 2, see Table I) and sample points for the optimization in the

minimax sense of a three-section 100-percent relative-bandwidth

10: l-transmission-line transformer as in Charalambous and Bandler

[2, table I]. The effort to reach or exceed a reflection coefficient of

0.19729 (optimal to 5 figures) is compared taking f ~as the modulus

of the reflection coefficient. We take as variables the lengths L and

characteristic impedances Zi. About ~ to ~ of the response evalua-

tions used by the Charalambous-Bandler algorithms [2], tabulated

in Table I, are required. Increasing p in the $ algorithm gave poorer

results. The p algorithm appears relatively insensitive t o the sequence

of p used.

Table II shows details of the progress of the p algorithm on

Problem 1 and Table III shows the corresponding progress of the

g algorithm.

A bandpass filter of symmetrical structure [10], the first four

components of which are a unit element followed by a shunt shorted

stub, a series open stub, and a shunt shorted stub, is considered

next, with specifications of 0.1 dB from 1.,0875 tc) 3.2625 GHz

(passband) and 50 dB at 0.6 and 3.75 GHz. The init:al normalized

characteristic impedances were taken as 0.63, 0.33, 127, 0.26, 1.27,

0.33, and 0.63. The lengths were fixed at normalized values of 1.

The functions fi were set to ~ the difference in decibels between the

response and specifications, the positive sign corres~!onding to the

TABLE I

OPTIMIZATION OF A THREE-SECTION 10:1 TRANSFORMER OVER

1OO-PERCENT RELATIVE BANDWIDTH

Efforta required to re.ch or exceed a
reflection coefficient of 0.1972’3 [optimal to 5 figure. ]

Problem 1 Problem 2
Method

Pm’meter FUnct ion sample Re,PmIse Function sample Reqmnse
6 or P Evaluations Points Evalwtio. s Eval.atiom Poims Evalu.tims

{-algorithm 0.1 28 11 308 19 11 209

( lower bound) 0.18846 16 7 112 16 7 112

,,=2 0.19730 45 4 180 53 4 212
—

/=0 0. 1Q729 ii 600 ii 533
— —

p-algorithm 8 39 11 429 29 11 319

3rd order 48 17 8 136 18 8 144

extrapolation 288 15 4 60 14 4 56

~=o 1728 12 4 48 11 4 44
—

n = 0.001 83 6; G 5Z
— —

Ch.wa 1mbo”, AQ.1 165 11 1815 105 11 1155

13mdler [2] A1g.2 155 11 1705 95 11 1045

‘ Does not include response evaluations to determine sample
points to be used.
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TABLE II

PROGRESS OF THE p ALGORITHMON PROBI,EM1

Extrapolated -
Max. reflection coefficient

r value of p rth opt imm a Sol.t ion
at extrapolated

r rth opt,... sol.? i..

8

2 48

3 288

4 1728

.98828
1.62868
1.00004
3.16228

.98828
6.13993

.99833
1.63478

.99!391
3.16228

.99833
6.11703

.99973
1.63472

.99!299
3.16228

.99973
6.11726

99!!95
1.63471
1.00000
3.16228

.99995
6.11730

same ,21017 .21017

1.00035
1.63600

.99988 .1’3838 .19863
3.16228
1.00035
6.11246

1.00000
1.63467
1.00000 .19747 .19732
3, 16228
1.00000
6,11744

1.00000
1,63471
1.00000 ,19732
3,16228
1.00000
6.11730

.19729

‘ Parameter vector [11/lq Z1 1~/lg Z2 l& ZJT where 1~ is the quarter-wavelength at center frequency.

TABLE 111

PROGRESS OF THE :ALGORITEMON PROBI,EM 1

r Valueof # rth .ptim.m’ Max. reflection inefficient

,1 .97238
1,5’3 720

.987g1 ,25530
3, 16228

.97238
6.26097

2 .18846 .99709
1,63451
1.00013
3, 16228

.99709
6, 11804

3 .19730 1.00000
1.63471
1,00000 19729
3.16228
) .00000
6.11730

a Parameter vector ~ll/lg ZI l.Jlq Zt la/lq Z8]T where lg is the quarter-
wavelength at center frequency.

TABLE IV

LOWER BOUNDS FOR TRESEVXN-SECTION FILTER

Pas$band Specification 0.1 d8
value of ,)0 2

value of c 0

Stopband First Maximum Pred, cted Next Maximum

spec;~BytiOn Error Lower Round Error
[dB) [dB) (dB)

50 .0.0256 -0.0283 -0.0282

55 0.1430 0.11S4 0.1160

60 0,6211 0.4954 0,4986

65 1, S486 1,3148 1.3195

passband, thenegative sign tothe stopband. Twenty-one uniformly

spaced passband points were considered but, due to symmetry, only

the first ten were actually used.

Weletg=O, q =0.0001, p1=2, p2= 12, p,=72, andp, =432.

Third-order extrapolation was used leading to 73, 16, 14, and 12

function evaluations per optimization. The sample points were,

respectively, 11, 11, 7, and6foratot,alof 1149 response evaluations.

The final extrapolated solution gives characteristic impedances of

0.606458, 0.303062,0.722085, 0.235612, 0.722085, 0.303062, and

0.606458 (symmetrical as expected). The 8 passband ripples as

evaluated at the 21 points fell within 0.0653 @0.06531 d.B. The

stopband responses were .5010347 dB. Central processing unit

(CPU) time on the CDC 6400 was 5 s. About half this time would

be expected if characteristic impedance symmetry were exploited.

The g algorithm generated the results of Table IV employing the

actual ripple maxima in the passband as found by quadratic ap-

proximations. The lower bound estimation process works whether

the specifications are violated or satisfied, yielding an immediate

indication of how good a design in the minimax sense one can expect

from the results of only one least squares approximation. This table
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also shows, by comparing columns 3 and 4, that only two optimiza-

tionswithp = 2of theg algorithm yield, for engineering purposes,

essentially equal-ripple responses. For a 50-dB specification the

final solution has characteristic impedances’ of 0.606595, 0.303547,

0.722287, 0.235183, 0.722287, 0.303547, and O.606595withdevi-

ationsfrom specifications of –0.028245 (equal toatleast 5 figures).

CONCLUSIONS

Two new algorithms and related results for the least pth approach

to minimax design have been presented. Documented computer pro-

grams are available from J. W. Bandler at a nominal charge. A more

detailed presentation of thk material is also available [11].
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I Actually symmetrical to at least the accuracy of the C DC 6400.

With the integralization of electric devices and the appearance

of high-power semiconductor devices, miniaturization of transmission

systems ,has become necessary. In dealing with such systems, it is

of considerable importance to confirm the rise and distribution of

temperatures appearing in the operation of the devices in as much

as they are in a risk of thermal destruction and thermal degenera-

tion. For the analysis of these problems, some theoretical methods

and numerical procedures have been proposed. There are, however,

various difficulties in the analysis of such theoretical methods.

In the present analysis, the finite element method based on the

variational method was used because of its advantage in dealing

with the complicated contours as well as composite media. In rela-

tion to the heat conduction equation in a two-dimensional case, the

functional is defined as [1]

where T is the temperature, C the heat capacity, k heat conductivity,

and q the rate of heat generation. The temperature rise and distri-

bution can be obtained by finding the function T by which the

functional x is made stationary. To carry out the preceding method,

the domain is divided into many triangular elements, x is differenti-

ated with respect to T, the derivative is set equal to zero. The

resulting equation is thus given by

where [H] is the heat conductivity matrix, [P] is the heat capacity

matrix, and {K} is a vector which expresses the distribution of heat

sources. Applying the trapezoidal approximation for the derivative

with respect to time, the following difference equation was obtained

for all nodal temperatures in a matrix form

( ) ({1 )[H] +~[P] {T}, = [P] ~ _~,+~ {T),-,,, + {K},.
t

(3)

To illustrate the correctness of the method, we emplcyed a simple

problem where heat source q ( = 100 W/cm3) distributes uniformly

in the square column of alumina with infinite leng !th under the

Newton cooling condition. The temperature rise at the center of the

column obtained by both the exact analytical solution and by the

finite element method are shown in Fig. 1, and difference between

the two methods is within one percent.

Then the temperature characteristics are calculated for striplines

with triple-layer dielectric media. The analytical model is shown in

Fig. 2 where H = W* = 0.1 cm, al = at = as = H/3, WI = 10al,

and b = 0.001 cm. For symmetry, the right half-plane is considered.

The center medium is alumina, the heat source material is copper,

and other media are glass. The respective thermal constants are

shown in Table 1. The rate of heat generation per unil t volume q is
104 W/cm’. The boundary condition at the surface where x = O is

Analysis of the Transient Temperature Distribution in a

Stripline with Triple-Layer Dielectric

MASAKI SASAK1, NORINOBU YOSHIDA,
ICHIRO FUKAI, MEMBER, IEEE, AND JUN-ICHI FUKUOKA

Absfracf—The transient temperature distributions in the cross

section of a stripline with triple-layer dielectric substrate are found

by employing the finite element method. The calculations for three

cases of different depths of center conductor considered as heat

source are shown.

For each case, the calculated temperature distributions are shown

at f, = 10 s when the temperature variation has a large gradient in

time and at the steady state.
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Fig. 1. Example 1: Geometry of the problem and the temperature rise

at center of heat source. d = 0.5 mm.


