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A Nonlinear Programming Approach to Optimal 
Design Centering, Tolerancing, and Tuning 

JOHN W. BANDLER, SENIOR MEMBER, IEEE, PETER C. LIU, MEMBER, IEEE, AND HERMAN TROMP 

ABsfra&A theory of optimal worst-case design embodying centering, 
tolerancing, and tuning is presented. Some simplified problems and special 
cases are discussed. Projections and slack variables are used to explain 
some of the concepts. The worst-case tolerance assignment and design 
centering problem falls out as a special case. Practical implementation 
requires a reasonable and’relevant number of parameters and constraints 
to be identified to make the problem tractable. Two circuits, a simple 
LC low-pass filter and a realistic high-pass filter, are studied under a 
variety of different problem situations to illustrate both the benefits to 
be derived from our approach and the difficulties encountered in its 
implementation. 

I. INTRODUCTION 

C OMPONENT TOLERANCE ASSIGNMENT is now 
considered to be an integral part of the design process 

[I]-[7]. The optimal worst-case tolerance problem with 
variable nominal point has benefitted in terms of increased 
tolerances [5]-[7]. Tuning [7], [S], on the other hand, 
does not seem to have been given its proper place in the 
design process. This work, therefore, brings in tuning of 
one or more components basically to further increase 
tolerances to reduce cost or to make unrealistically toleranced 
solutions more attractive. The mathematical formulation of 
an approach which embodies centering, tolerancing, and 
tuning in a unified manner is presented. Simplified problems 
and appropriate geometric interpretations are discussed. 
The worst-case purely toleranced problem and purely tuned 
problem fall out as special cases, as is to be expected. 
Numerical examples involving simple functions and a 
realistic as well as a simple circuit, illustrate the concepts. 

II. FUNDAMENTAL CONCEPTS AND DEFINITIONS 

A design consists of design data of the nominal point 4’, 
the tolerance vector e and the tuning vector t where, for k 
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parameters, 

We assume that the parameters can be varied continuously 
and chosen independently. Extra conditions such as dis- 
cretization and imposed parameter bounds may be treated 
as constraints [6]. Some of the parameters can be set to 
zero or held constant. 

An outcome {q%‘,,~,p} of a design {+“;c,t} implies a point 

4 = 4” +, EP (2) 
where 

rcl 1 
(3) 

and p E R,. R, is a set of multipliers determined from 
realistic situations of the tolerance spread. For example, 

R,&{(c~-1 <piI -aioraiI~iIl,iEZ~) (4) 

where 
Olai<l (5) 

and 
Z4 p {1,2; * *,k}. (6) 

The most commonly used continuous range is obtained by 
setting a, to zero. A commercial stock may have the better 
toleranced components taken out, thus 0 < ai I 1. Unless 
otherwise stated, we consider 

R, p {p 1 - 1 I CLi I 1, i E I+}. (7) 

The tolerance region R, is a set of points described by (2) 
for all p E R,. In the case of - 1 I pi I 1, i E Z,, 

R, A (4 1 4i = 4i” + Ei,Ui, - 1 I Pi I 1, i E Z+} (8) 

which is a convex regularpolytope of k dimensions with sides 
of length 2si, i E 4, and centered at 4’. The extreme points 
of R, are obtained by setting pi = + 1. Thus, the set of 
vertices may be defined as 

& P (4 I4i = $i” + EiPi, Pi E (-1vl)v i E I+>. (9) 

The number of points in R, is 2k. Let each of these points 
be indexed by #, i E Z,, where 

Z” p {1,2;**,2k}. (10) 
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Fig. 2. Example of three different settings of tunable constraint 
regions. 

Fig. 1. Illustration of regions R,,R,, and R,. If c = 0 then R, is 
centered at 4”. or discrete. &(I& = R, in the ordinary sense if $ is a 

constant. 
Thus 

R, = {~!J’,c#J*; * .,q52k}. 

The tuning region R,(p) is defined as the set of points 

4 = @ + Ep + Tp (11) 

for all p E R,, where 

rfl 1 
(12) 

The components of p will be called slack variables since 
they do not directly contribute to the objective function. 
Some of the common examples of R, are 

Rp & {PI -1 I pi I 1, ~EI+} (13) 

or in the case of one-way tuning or irreversible trimming, 

or 
R, = {p I 0 5 pi I 1, i E I+.} (14) 

R, = {p ( - 1 < pi I 0, i E I4}. (15) 

Unless otherwise indicated, the case given by (13) is 
considered. 

The cqnstraint region R, is given by 

for all i E I,} (16) 

where 
1, P W;~-,m,l (17) 

is the index set for the performance specifications and 
parameter constraints. R, is assumed to be not empty. Other 
conditions and assumptions will be imposed on R, as the 
theory is developed further. 

The definitions are illustrated in Fig. 1 by a two-dimen- 
sional example. 

A tunable constraint region is denoted by R,(+), where # 
represents other independent variables. Fig. 2 depicts three 
different regions of an example of R,(e). Overlapping of 
these regions is allowable. The value of $ may be continuous 

III. THE OR&XNAL PROBLEM P, 
The problem may be stated as follows: obtain a set of 

optimal design values {$‘,e,t} such that any outcome 
{+“,e,~}, p E R,, may be tuned into R, for some p E R,. 

It is formulated as the nonlinear programming problem: 

P,: minimize C(4O,s,t) ’ 

subject to 4 E R, 

where 
4 = 4' + Ep + Tp (18) 

and constraints ~‘,E,c 2 0, for all p E R, and some p E R,. 
C is an appropriate function chosen to represent a reason- 
able approximation to known component cost data. 

Stated in an abstract sense, the worst-case solution of the 
problem must satisfy 

RAPI n R g 13 . (19) 

for all p E R,, where @ denotes a null set. 

IV. THE REDUCED PROBLEM P, 

The original problem PO of the preceding section can be 
reduced by separating the components into effectively 
tuned and effectively toleranced parameters. Let 

Z, p {i [ Ei > tip i E I4} (20) 

1, 4 {i 1 ti 2 Ei, i E I+} (21) 

Ei’ 4 Ei - tip i E Z, (22) 
and 

ti’ A ti - Ei, i E It. (23) 

It is obvious that It and 1, are disjoint and Z, u 1, = I&. 
Now, consider the problem 

P, : minimize C(f$‘,e,t) 

subject to 4 E R, 

where 
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for all -1 5 pi I 1, i E I,, and for some - 1 I pi’ I 1, 2) On the other hand, for i E I,, given feasible pi( - 1) and 
i E I,. pi(l) such that 

Theorem 1 +i - ‘i + riPi I bi” + Ej + tipi (32) 

A feasible solution to the reducedproblem P, is a feasible there exists a feasible pi’ such that 
solution to the original problem PO. 

Proof: Given +‘,e,t we will show that 

1) &i~i + tjPj = Ei’pi, i E Z, 

2) Ei~i + ?iPi = ?i’pi’, i E It 

4i” - Ei + tipi I die + (ti - EJPi’ 

I $Ji” + Ei + tipi( (33) 
(25) This is true for ti = Ei and can be seen for ti > Ei by 
(26) rewriting this inequality as 

under the restrictions on pi, pi, and pi’. 
1) Since pi can be freely chosen from - 1 I pi I 1, we 

can let pi = -pi giving 

-Ei + tiPi < pit I &i + tiPi . 
- 

(34) 
tj - Ej ti - Ei 

C&i - ?i)~i = Eil~i. (27) 
Hence, if R, is one-dimensionally convex, the assumption 
implies that 

2) Forany -1 < pi’ < landall -1 I pi I 1,wecan 
choose 

_ 1 5 p, = (ti - EdPi’ - Ei/Ji I 1 
I 9 tj # 0. (28) 

Thus any point with components represented by (24) of 
the reduced problem can be represented by (18) of the 
original problem. 

Intuitively, this theorem states the fact that a feasible 
solution to a restrictive problem is also a feasible solution 
to an appropriate less restrictive problem. The variable 
transformation (22) and (23) may be considered as ex- 
traneous constraints to be satisfied. 

Theorem 2 

(35) 

Thus, a feasible solution to the original problem can be 
transformed to a feasible solution of the reduced problem 
pt. 

A Geometric Interpretation 

Let us define a projection matrix P as a diagonal matrix 
such that 

Pp (36) 

A feasible solution to the original problem PO implies a where 
feasible solution to the reduced problem P, if R, is one- pi= ; 

( 
for i E It 

dimensionally convex [3]. for i E I, ’ (37) 
f 

Proof: 1) We note, for i E Z,, that The projection of a point C/J may be denoted as &, = P$. 

$j” - Ej + tipi I $i” - Ei + tj I Rio + (Ei - ti)~j 
It may be noted that the projections of two points @,4b(i) = 
I$“ + uej, where ej is the jth unit vector, for j E I,, and some 

I $i” + Ei - t! S 4i” + Ei + tip,(l) constant CC, coincide. The projection concept and the 

(29) 
introduction of slack variables provide a key to under- 
standing the tuning concept. 

where pi(- 1) corresponds to ,U~ = - 1 and.pi(l) corresponds Let 
to pi = 1. If R, is one-dimensionally convex, the following 
assumption Ret P (4 1 4i” - Ei’ 5 4i I 4: + E*‘, i E I,} (38) 

and 

4: - Ei i tipi(- 1) ) 1 [ 4i” + Ei + tipi 1 E R, (30) & A (4 1 4i” - tl I 4i 4 4i” + ti’, i E It} (39) 

denote the regions defined by the effectively toleranced and 
implies that 

[(F + (ii - ti)pi] ER, 

effectively tuned parameters. Then consider the following 

(31) regions 2; ;;;,I Pd’,‘#‘ERd ; 

where we consider changes in the ith component only and and 
impose the required restrictions on ,Ui and pi* R ctEp P GP, I & = PA 4 E %,I. (42) 
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Fig. 3. Geometric interpretation of reduced problem PI. 
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Fig. 4. Example of Re,, $ R,,,,. R,(p) for c = 0 is indicated, for 
convenience. 

Fig. 3 illustrates the definition of the regions. Any point 
whose components are given by (24) lies in the intersection 
of R,, and R,,. Suppose the projection of R,,, onto the 
subspace spanned by the effectively toleranced parameters 
includes the projection of that point. Then it may be tuned 
into R,,, by adjusting the value of pi’, i E I,. 

The reduced problem P, may be stated as: solve a pure 
tolerance problem (i.e., no tuning) in the subspace spanned 
by the toleranced variables with REfP as the tolerance region 
and Rcfep as the constraint region. In other words, the 
regions defined by a feasible solution must satisfy the 
condition that 

Fig. 4 illustrates a case where R,, $ Rctep. An outcome, 
for example, at 4’ cannot be tuned to R, within the effective 
tuning range. However, there exists a solution to the original 
formulation by tuning both components. R, is not one- 
dimensionally convex in this case. 

Special Cases 

Case I: I, = 0, the Pure Tuning Problem: In this case, 
R,, is the entire space and P is a zero matrix. REtp is a single 
point at the origin. The problem has a solution if 

Ret, # 0. (44) 

Case 2: Z, = a, the Pure Tolerance Problem: In this case, 
R,, is the entire space and P is a unit matrix: 

R,,, = R,, and Retep = R,,, = R,. 

The problem has a solution if 

R,, E R,. (45) 

From a tolerance-tuning point of view, the first case is 
trivial theoretically. Except when ‘there is only one single 
point R,, the pure tuning problem is equivalent to an 
optimization of the nominal parameter values. On the 
other hand, the pure tolerance problem is very important 
from a practical point of view. 

Extension of P, for Tunable Constraint Region 

Three types of components can be identified when the 
constraint region is considered to be tunable. They are 
a) toleranced components, b) components tuned by the 
manufacturer, and c) components tunable by the customer. 
In this case, 

4 E RcW 
where 

+j = 4: + 
l 

Ei’Pi, for i E I, 
ti’pi’, for i E It, (46) 
ti’Pi’(+)9 for i E It, 

where It,,, identifies components b) and It, identifies com- 
ponents c). 

Setting the $ to a particular value will control the setting 
of pi’, i E I,,, such that 4 will be in that particular constraint 
region R,($). 

V. THE REDUCED PROBLEM P, 

It is impossible to test all the points in R,, to be in Rctep. 
In order to make the problem tractable a number of simpli- 
fying assumptions could be made to obtain an acceptable 
solution to the problem with reasonable effort. To this end 
we replace the continuous range - 1 I pi I 1 by a 
discrete set ,U~ E { - l,l}, i E 1,. Now, consider the problem 

where 

P, : minimize C(4’,e,t) 

subject to I$ E R, 

forall~i~{-l,l},i~I,,andsome -1 I pi’ I l,iEJ,. 
Let us define the set of projected vertices (or the vertices 

of the projected region) by 

R, P (4, I 4p = PA 4 E &I. 

The condition may be now stated as 

(48) 

R, E Rctep. 

Theorem 3 

A feasible solution to reduced problem P, implies a 
feasible solution to reduced problem P, if Rctep is one- 
dimensionally convex. 
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This is a pure tolerance problem in the subspace spanned 
by the effectively toleranced parameters. For a proof in the 
tolerance parameter space, see Bandler [3]. 

Optimality requires that 

1 -- 
Bl 

2 Ul 

u2 

u3 

u4 

-k(i) 

VI. THE OBJECTIVE FUNCTIONS 

Several objective functions (or cost functions) have been 
proposed Cl]-[5]. In practice, a suitable modeling problem 
would have to be solved to determine the cost-tolerance 
relationship. Here, it is assumed that the tolerances and 
tuning ranges (either absolute or relative) are the main 
variables and that the total cost of the design is the sum of 
the cost of the individual components. 

The objective function should have the following 
properties 

wJOA~> + c, ase+co 
W0,~4 + 00, for any &i + 0 
C(+O,&,t) --f C(C$~,E), as t + 0 (4% 

W0,4~> + a, for any ti + co. 

Suitable objective functions will be, for example, of the 
form 

c = ,il : + i c;yi 
i i=l 

where xI and yi denote the tolerances and tuning ranges, 
respectively. In the case of relative tolerances or relative 
tuning ranges Xi = Ei/~iO X 100, yi = ti/~i’ X 100. We 
may set the appropriate Ci’ to zero if tuning is considered 
either free, or fixed or is not required. Ci may be set to zero 
if the corresponding tolerance is fixed. 

VII. MATHEMATICAL EXAMPLE 

Consider the constraints 

&-41-220 (51) 

-c#J~~ + 164, r 0. (52) 

A convex region R, is defined by these constraints. 
We will take R, as an infinite set of discrete points p(i), 

i = 1,2,-e., where -1 I PI(i) I 1 and -1 I p2(i) I 1. 
Thus a relevant problem may be formulated as follows. 
Minimize 

c,l+l (53) . 
El 82 

with respect to sl, s2, 410, and $20, and subject to 

1 -- 
E22 

0 

0 

= + C di) P2(i) I 
-1 

_. 1 

i i 

16pl(i) 

+ C w5(i> -2c12W(42° + &2P2(iN 
1 

(57) 

I 16 

--2(d~2’ + E2P2G)) J 

u,g, = ** - = u4g4 = U5(i)g5(i) = u6(i)g6(i) = 0, 
i = 1,2;** (58) 

Ul,’ * -,~4,Gh&) 2 0, i = 1,2;** * (59) 

where u denotes a multiplier. To solve the above equations, 
assume that sr, s2, 410, and +20 are not zero, therefore, set 
ul, u2, u3, and u4 to zero. Minimize g5(i) of (55) and g6(i) 
of (56) with respect to p(i). This leads, respectively, to 

(4Q0 - EJ - (q&O + El) - 2 2 0 (60) 

using p(i) = [ 1 - llT and 

-(&O + ~2)’ + 16($10 - Ed) 2 0 (61) 

using p(i) = [ - 1 11’. The optimality conditions (57)-(59) 
are correspondingly reduced yielding the solution 

El = 0.5 
E2 = 0.5 

f#J10 = 4.5 
f$20 = 7.5. 

Consider next the problem of minimizing 

CL (62) 
B2 

with respect to t l’, s2, &‘, 420, and pi(i), and subject to 

g1 = t1’ 2 0 
g2 = E2 2 0 
g3 = &O 2 0 
g4 = 420 2 0 (63) 

g1 = 81 2 0 
82 1 0 

g,=O.l-t,‘tO 
g2 = 91° 

(64) 

g3 = q&O 2 0 

4J20 2 0 (54) gdi) = g4 = (420 + s2p2(i)) (&O tl’pl’(i)) - + - 2 2 0, 

95(i) = (42’ + E2p2(i)) - (4,’ + elpl(i)) i = 1,2;** (65) - 2 2 0, 

i = 1,2;.. (55) &(i) = -(dam’ + e2p2(i))2 + 16(&O + tl’pl’(i)) 2 0, 

gdi) = --(ho + w2W2 + W&O + wlG)) 2 0, i = 1,2;** (66) 

i = 1,2;.** (56) g&3 = 1 - p,‘(i) 2 0, i = 1,2,*-e (67) 

where - 1 I pi(i) 9 1 and - 1 4 p2(i) 4 1. 1 s&) = 1 + PI’(i) 2 0, i = 1,2;**. (68) 
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Here, Ed is considered fixed at 0.5 and there is a maximum 
effective tuning range of 10 percent. Hence, the first com- 
ponent does not contribute to the cost. The effective tuning 
range tl’ = tl - 0.5 is used as a variable. 

The optimality conditions require that 

VIII. FREQUENCY DOMAIN IMPLEMENTATION 

Data for a specific problem is contained in a data vector 
u’ which has the form 

r 

$3 

1 

i = 1,2;**,m, (72) 
s 
W 

0 

1 -- 
E22 

0 

0 

0 

Ul 

u2 

= 

u3 

u4 

0 

+ u5 

+ C +G) 

1 -- 
A0 
0 

t1’ 

4 
02 

10 

0 

0 

+ c u6(i) 

1 16pl’G) 

-PlYi 

P2U) 

-1 

1 

-tl’ei 

1 
I -2(92’ + y2(iNP2(i) 1 

16 

-W2’ + E2p2(iN 

16t,‘e, 

-o- -0- 

0 0 

+ z %di) 0 + F +di) 0 j (69) I 
0 0 ! 

-ei -ei- 

u,g, = *** = u5g5 = ug(i)g6(i) = ” ’ = #g(i)gs(i) = 0, 

i = 1,2;*- (70) 

I Ul, - * *,ug,us(i); * *q,(i) 2 0, i = 1,2,-s*. (71) 

Minimize g6(i) of (65) and g7(i) of (66) with respect to 
p2(i). We use p2(i) = ‘- 1 in (65) and p2(i) = 1 in (66) for 
this purpose.‘The corresponding pi’(i) = - 1 and pi’(i) = 1, 
respectively, are obtained by maximizingg,(i) andg,(i) with 
respect to pi’(i). This yields the solution 

t,’ = 0.5432 
E2 = 1.444 

cplo = 5.4321 
920 = 8.3333. 

As expected, the inclusion of tunable elements can in- 
crease the tolerance on the components. The tolerance of 
the second parameter increases from s2 = 0.5 to s2 = 1.444 
when the first component is allowed to have a maximum 
effective tuning range of 10 percent. This means that an 
actual absolute tuning of 1.0432 and a tolerance of 0.5 are 
designed for +I. The result can only be accomplished by 
allowing the nominal point to move. For example, the first 
component moved from 4.5 to 5.4321, a shift of 20 percent. 

ui p 

where $ is an independent parameter denoting frequency 
or any number to identify a particular function for which 
the vertex @ is chosen. ~1 is the vector associated with q, 
in particular, 

r=l+i !!$!I-? [ 1 p-1 , ,Ujr E (-l,l)* (73) 
j=l 

m, is the total number of distinct vectors ai. S is a specifica- 
tion and w a weighting factor associated with each J/. In our 
present work, 

w= ;;p 
( 

if S is an upper specification 
3 if S is a lower specification. 

The performance constraints may now be formulated in 
the form of 

g=w(S-F)20 (74) 

with appropriate subscripts. F is the circuit response func- 
tion evaluated at sample point J/ and point 4 which is given 
by 

4 = p& + jz, (bj" + tj'Pj'(r)>ej. (75) 

The projection matrix P and the index sets Zt and Z, are 
fixed for a particular problem. They are determined before 
optimization takes place. 

Let the n optimization variables be denoted by x in- 
cluding the variable nominal values, tolerances, tuning 
variables and all the appropriate slack variables pi’(r), 
j E Z,, r E Z,. Let m be the total number of constraints which 
include the performance specifications, slack variable 
bounds, parameter bounds, and any other extra constraints 
not considered above. In general, for linear network design 
in the frequency domain 

n = k. + k, + k,(l + n,) (76) 
and 

m = i$l n,(i) + 2k,n, + - * * [ 1 (77) 

where k,, k,, and k, are the number of variable nominal 
parameters, toleranced and tuned parameters, respectively; 
n, I 2k” is the number of distinct vertices chosen; nIlr is the 
number of frequency points considered; n,(i) is the number 
of vertices chosen at the ith frequency point and 2kpn, is. 
the number of slack variable bounds. 
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Fig. 5. Circuit for LC low-pass filter example. 

TABLE I 
SPECIFICATIONS FOR LC LOW-PASS FILTER 

TABLE II 
DATA FOR LOW-PASS FILTER 

Low-Pass Filter 

The LC low-pass filter shown in Fig. 5 is considered 
[5], [6]. Table I summarizes the specifications. The critical 
vertices used in the data vector ai can be obtained from 
published vertex selection schemes [6]. These schemes utilize 
first partial derivative information at some local points or 
local regions to predict the worst vertices. Very often up- 
dating of u’ is required at suitable intervals. In this case, the 
numerical experience we have gained previously from the 
tolerance problems [5], [6] allows us to chose the minimal 
set of vertices. These are: @ at II/ = 0.45, 0.50, 0.55 rad/s; 
4’ at $ = 1.0 rad/s and 4’ at $ = 2.5 rad/s, where 4 = 
[L,CL21T. Updating was not required in this example 
except when all the three components are toleranced and 
tuned simultaneously. Table II summarizes the data for 
the filter. 

Several cases have been studied [9] but the results of the 
case L, tuned with C and L, toleranced will be presented. 
The objective function used is based on the relative tolerances 
of C and L, in the form 

.2$+~ 
x5 

(78) 

where, assuming tc = t,, = 0, and some fixed value of 
E=,, we take 

x1 = (b10 = L,O 
x2 = #J20 = co 
x3 1 d30 = L,O 

x4 - t1’ = t& - EL1 

x5 ’ = E2 = EC 

x6 2=e 3 = EL 2. 

The cost of element L, is assumed fixed. It, therefore, is 
not included in (78). The last three transformations are 
chosen to avoid changes of sign. There are three distinct 
projected vertices : 4f, 4P8, and rpP’. The projection matrix 
in this case is 

0 
P= 1 [ 1 1 * 

(79) 

Therefore, the other variables may be identified as 

x7 = PI’@) 

xs = P,‘@) 

x9 = P,'(l). (80) 

Substituting the numerical values from Table II into (75) we 
have the following: 

u1,u2,u3 => 4 = P&j + (410 + tl’p1’(6))el 

x1 + x42x7 

= 2 [ 1 x2 - x5 

x3 + x62 

a4 * 4 = P4* + (&O + t,‘p,‘(8j)e, x1 + x42x, 
= [ 1 x2 + x52 

x3 + x62 

a5 * 4 = P4’ + (410 + t,‘p,‘(l))e, 

031) 

w 

x1 + x42xg 

= [ 1 x2-x52 . (83) 
x3 - x6 

2 

The performance specifications gi, i = 1,2, * * *,5, may now 
be formed. Additional constraints are given by 

g5+2i-1 = 1 + x6+i 

95+2i = 1 - x6+i 1 
i =. 1,2,3 (84) 

912 = t, - x42/xl. 

The last constraint gi2 is designed to limit the effective 
tuning range to t,. 

The resulting nonlinear programming problem (9 
variables, 12 constraints) is solved by a least pth optimiza- 
tion algorithm due Charalambous [lo] and the quasi- 
Newton method developed by Fletcher [ 1 l] and Gill and 
Murray [12]. The starting point corresponds to the ojptiin- 
ally toleranced nominal point and arbitrary small tolerance 
and tuning values. Typically, a few hundred function evalua- 
tions with less than 30 s of CDC 6400 computing time is 
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TABLE III TABLE IV 
L1 TUNED, C ANTI L2 TOLERANCED OPTIMAL TUNING 

Parameters fr = 0.2 tr = 0.1 tr = 0.05 Parameter* c = 10 c = 20 c = 50 
-~ 

f For the optimally toleranced solution [5] Llo = Lzo = 1.9990, 
Co = 0.9056, 100~JL~~ = 100e3/Lz0 = 9.89%, KKk2/Co = 7.60%. 

required. Table III summarizes the results. Three different 
tuning ranges are used. The 5-percent tuning of L, increases 
the tolerances of the other two components by as much as 
65 percent. A lo-percent positive and negative shift is 
obtained for L,’ and Lzo, respectively. Co is shifted slightly. 
The slack variables assume values of - 1, - 1, and 1, 
indicating that the worst cases do occur at the vertices and, 
correspondingly, the tuning is set to extreme values. 

Tuning of C presents a very interesting case. The sym- 
metry property observed in the pure tolerance problem is 
preserved. Due to this symmetry, a 5-percent tuning range 
of C produces an increase of 90 percent in the tolerances 
of L1 and L2. 

Suppose the designer has no prior knowledge of the 
choice of the tuning component. We consider an objective 
function’ of the form 

GI [f+c-$]. (85) 

One additional vertex $3 is considered in order to bound the 
solution during optimization. We omit details of the con- 
straints, and summarize the final results in Table IV for 
different c. There are 21 variables and 36 constraints, hence, 
the computational effort has substantially increased over the 
previous case. The advantage gained in the general formula- 
tion is that the optimization will automatically choose the 
most appropriate component for tuning, which is C in the 
objective of (85). 

The same designs can be obtained by the reduced formula- 
tibn using C as a tuned and toleranced component and L, 
and L, as toleranced components. 

High-Pass Filter 

This problem was suggested by Pine1 and Roberts [13]. 
The circuit diagram is shown in Fig. 6 and the basic specifi- 
cations for the design are listed in Table V. The insertion 
loss relative to the loss at 990 Hz is to be constrained as 
indicated with resistances R, and R, related to L,’ and 

0.246h 

-0.9992 

-1.0000 

-1.0000 

0.9887 

1.0000 

0.9989 

0.8433 

-0.1468 

0.8944 

l."ml" 

-0.9846 

-0.8813 

-1.0000 

-0.9876 

0.9933 

1.0000 

0.9029 

-0.6051 

0.6434 

0.6441 

1 0 1 0 100 y/L, = 100 E3/L2 29.08 k 23.84 % 14.14 % 

0 22.69 % 13.53 % 0.00 % 

" = 21 m = 36 

,3.2k-y~~~-jok 
Fig. 6. High-pass titer. 

TABLE V 
SPECIFICATIONS FOR HIGH-PASS FILTER 

680 

680 1800 710 - 
725 

1.75 +1 

740 

Reference Frequency: 990 HZ 

2"99OL,o 
R5, R7 related to L; and L; rhro"ghQ = p, 

2n ss,,; 
= = 1456 

5 R 7 
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L,’ with constant Q. The terminations are fixed, the 
designable parameters being C1, C,, C3, C,, L5, Cs, and L,. 

The objective function throughout was taken as 

TABLE VI 
DATAFOR OPTIMIZATIONOF HIGH-PASS FILTER 

where 

c= ii” 
i=l Ei 

-Go- 
Go 
c3O 

Go &= 

2: 

-L;O- - / 

(86) 

The optimization package used here is DISOPT [14], 
which has been previously employed in worst-case tolerance 
problems [6]. The same quasi-Newton unconstrained 
minimization procedure as for the work described in the 
previous section is incorporated into DISOPT. The extra- 
polation feature [15] was chosen to accelerate convergence 
to the constrained optimum. 

Verification of the designs to be described was carried out 
using all 2’ vertices plus the nominal point at 170, 360,440, 
630-680, and 680-1800 Hz. Forty-two logarithmically 
spaced points were taken for the latter interval, and 8 for the 
former interval. 

Table VI indicates the effort required to obtain the results 
of Table VII. Because of the complexity of the problems 
preliminary runs of the program were required before the 
final number of constraints were established. This informa- 
tion along with a realistic assessment of cost is given. 

Case I: No Tuning (f = 0) 

Table VI summarizes the particular frequencies, specifica- 
tions and the particular vertex number employed to obtain 
the final tolerances listed in Table VII. Table VII also lists the 
shifts in nominal parameter values with respect to those of 
an uncentered design [7], [13]. 

Case 2: 3 Percent Tuning for L5 

Results corresponding to the ones for Case 1 are tabulated 
in Tables VI and VII. Note that all the tolerances have 
increased. Fig. 7 shows the nominal response as well as the 
worst upper and lower outcomes based on all 2’ vertices. 

A more detailed verification of the results was made. 
Sixty logarithmically spaced points were taken from the 
critical region 630-680 Hz as well as 40 from 600-630 Hz. 
All the vertices were checked plus the nominal point, 
followed by 4000 Monte Carlo simulations uniformly 
distributed in the effective tolerance region. No violations 
were detected, and the upper and lower limits of response 
given by the vertices bounded the results from the Monte 
Carlo analysis except at 638.2 Hz, where the lowest relative 
loss obtained from the vertices was - 0.0243 dB, whereas the 
Monte Carlo analysis yielded - 0.0246 dB. 

As a further check on the optimality of these results, L5 

360 

440 

630 

630 

637 

640 

643 

650 

658 

665 

670 

680 

680 

710 

725 

730 

740 

860 

910 

930 

,040 

,050 

-0.05 -1 nominal.12, 
50,58,,02 

-0.05 -1 

-0.05 -1 

-0.05 -1 

1.75 +, 123 

-0.05 -1 216 

1.75 Cl 43,83 

1.75 +1 43,83 

1.75 +1 

1.75 +1 43,83 

-0.05 -1 118,126 

-0.05 -1 118.126 

-0.05 -1 118,126 

-0.05 -1 - 

-0.05 -1 3 

18 108 

nominal,12, nominal, 12,34 
34,42,50,58, 42,44,58,,06, 
102,106,126 126 

‘l2 

34,42 

123 

236 

43.83 

43,83 

43,83 

118,126 

118,126 

118,126 

3 

123 

296 
43.83.123 

43,83 

43,83 

43,83 

118,126 

118,126 

118,126 

3 

48 

128 

1 

bO,87,95, 
100,104,1”8, 
,20,,26 

87 

52,58,60 

85,93,,,7 

nominal.12, 
36,42,50,58, 
85,93,94, 
,02,106,,26 

58,69,85 

34,s 

2 

123 

226 
43.83 

43,83 

43 

43,83 

118,126 

118,126 

118,126 

3 

3 

Number of Response 3, 37 37 55 
C~“Z.tElilltS 

Total of Number 45 51 5, 69 
constraints m 

~umbcr of Variables n 14 14 14 14 

Starting Paint Given Optimum for C.KXl 
by Pine1 [,3] 

Number of Trial 
R”“S 3 1 2 1 

Total Computing 
Effoi-t (min)t 

15 5 6 7 

Computing Cost $94 $31 $37 $44 
Including Trialsi 

t On a CDC 6400. 

was allowed to be both toleranced and tuned as distinct 
from being effectively toleranced from the point of view of 
optimization. The same vertices, an additional 25-p variables 
and 50 additional constraints on the p variables were used 
without any significant improvement in the results. The 
values of the p variables confirmed the assumption that L, 
should be effectively toleranced for 3 percent tuning. 

Case 3: 3 Percent Tuning for L, and L, 

As indicated by Table VII a further improvement in all 
tolerances has been obtained. 
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lllb 
retersnce frequency 

/ 990 HZ 

1000 1400 I600 

frequency Hz 

6) 

nominal 
response 

~ 
700 

frequency HZ 

(b) 

Fig. 7. (a) Passband details of optimized high-pass filter (Case 2). 
(b) Stopband details of optimized high-pass filter (Case 2). 

Case 4: 3 Percent Tuning for L, 

The results for this problem (Table VII) are slightly 
worse than those for Case 2. A slight violation of the 
specification at 658 Hz was detected. We conclude that if 
only one inductor is to be tuned, L, should be chosen. 

IX. CONCLUSIONS 

A theory of optimal worst-case design embodying center- 
ing, tolerancing and tuning has been presented. The concept 
of a tunable constraint region that allows variable specifica- 

TABLE VII 
RESULTS FOR HIGH-PASS FILTER 

Parameters case 1 case 2 case 3 case 4 
No Tuning Lr Tuned I., and L, Tuned I., Tuned 

tolerance (%) 
'1 nom. shift(%) 

5.71 6.77 7.90 6.63 
r1s3.1 +I,.8 +18.3 +I,.6 

tolerance (%) 
'2 nom. shift(%) 

4.33 4.97 5.32 4.77 
r1fJ.2 +15.2 +14.4 +15.3 

tolerance (%) 
'3 nom. shift(%) 

4.72 5.81 7.23 5.83 
+16.6 +18.0 +18.8 +I,.8 

C.4 tolerance (%) 4.54 
nom. shiftel -3.8 

-2.z 5.03 -1.z 5.15 -3.1 4.78 

% nom. tolerance (%) 
3.95 4.44 3.82 

shift(%) -3.0 3.29 -3.0 -4.3 -4.1 

c tolerance (%) 6.32 7.05 7.27 6.66 
6 nom. shift(%) -7.3 -5.1 -3.6 -6.0 

5 nom. tolerance shift(%) (%) -6.4 3.64 -7.9 4.34 
5.04 4.32 

-7.9 -6.3 

* Violation of specifications. Relative loss = - 0.052 dB at 658 Hz. 

tions as set by the customer has also been incorporated. 
This may find application, for example, in tunable filters. 
The purely toleranced and purely tuned problems become 
special cases. Further simplification has been discussed in 
the light of one-dimensional convexity. 

As expected, the inclusion of tunable elements can in- 
crease the tolerances on the components. The results seem 
to justify the reduction of the general tolerance-tuning 
problem into one containing effectively toleranced and 
effectively tuned components, where appropriate. If the 
separation of the components is not decided in advance, the 
general problem with the cost function reflecting both 
tolerances and tuning ranges is appropriate, since an 
optimization program requires an explicit number of 
variables and constraints in advance. 

A component may be both tuned and toleranced simul- 
taneously. Thus, one can represent the effects of an un- 
certainty of a tuned component if the tuning range is larger 
than the tolerance. On the other hand, if the tolerance is 
larger than thr: tuning range (see, for example, Table VII), 
it may be considered to be a toleranced component with 
some small tuning capacity. The tuning range may or may 
not appear in the objective function. The different weight- 
ings of tuning and tolerancing in the objective exhibit the 
flexibility of the formulation. With a very heavy weighting 
in the tuning, we will obtain a solution equivalent to a pure 
tolerance prdblem. Zero tuning is automatically indicated 
by the result of the formulation. Reducing the. weighting 
will increase the tolerance as well as the tuning with a net 
effect of reducing the effective tolerance.Ei’ = &i - ti until 
a crossover occurs from effective tolerance to effective 
tuning. Beyond that, the effective tuning value will continue 
to increase until a threshold value occurs. Below the thresh- 
old, the solution in terms of effective tuning and tolerance 
problem is unaffected. The tolerances of other components 
‘will continue to increase with decreasing weighting on the 
tuning. 

A cost function tending to maximize tolerances and 
minimizing tuning has been implemented successfully in this 
context. For the high-pass filter the 3-percent tuning range 
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on the inductors was considered free, thus tuning did not 
enter into the objective function. A reduced problem involv- 
ing effective tolerances was found adequate since, as shown 
in Table VII, the tolerances exceed the tuning ranges. A 
good starting point for the tuning problem is a worst-case 
toleranced solution. The small tuning ranges in the high- 
pass filter problem meant that relatively small nominal 
shifts were obtained. 

It may be added that, as far as the authors are aware, this 
seems to be the most general formulation to date dealing 
with the centering, tolerancing and tuning problems at the 
design stage. 
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