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A Nonlinear Programming Approach to Optimal
Design Centering, Tolerancing, and Tuning

JOHN W. BANDLER, SENIOR MEMBER, IEEE, PETER C. LIU, MEMBER, IEEE, AND HERMAN TROMP

) Abstract—A theory of optimal worst-case design embodying centering,
tolerancing, and tuning is presented. Some simplified problems and special
cases are discussed. Projections and slack variables are used to explain
some of the concepts. The worst-case tolerance assignment and design
centering problem falls out as a special case. Practical implementation
requires a reasonable and relevant number of parameters and constraints
to be identified to make the problem tractable. Two circuits, a simple
LC low-pass filter and a realistic high-pass filter, are studied under a
variety of different problem situations to illustrate both the benefits to
be derived from our approach and the difficulties encountered in its
implementation.

I. INTRODUCTION

OMPONENT TOLERANCE ASSIGNMENT is now
considered to be an integral part of the design process
[1]-[7]. The optimal worst-case tolerance problem with
variable nominal point has benefitted in terms of increased
tolerances [5]~[7]. Tuning [7], [8], on the other hand,
does not seem to have been given its proper place in the
design process. This work, therefore, brings in tuning of
one or more components basically to further increase
tolerances to reduce cost or to make unrealistically toleranced
solutions more attractive. The mathematical formulation of
an approach which embodies centering, tolerancing, and
tuning in a unified manner is presented. Simplified problems
and appropriate geometric interpretations are discussed.
The worst-case purely toleranced problem and purely tuned
problem fall out as special cases, as is to be expected.
Numerical examples involving simple functions and a
realistic as well as a simple circuit, illustrate the concepts.

II. FUNDAMENTAL CONCEPTS AND DEFINITIONS

A design consists of design data of the nominal point ¢°,
the tolerance vector & and the tuning vector t where, for k
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We assume that the parameters can be varied continuously
and chosen independently. Extra conditions such as dis-
cretization and imposed parameter bounds may be treated
as constraints [6]. Some of the parameters can be set to
zero or held constant.

An outcome {¢°,e,u} of a design {¢°e,t} implies a point

¢ = ¢° + En @
where
&
€

E 1 )]

&

and pe R, R, is a set of multipliers determined from
realistic situations of the tolerance spread. For example,

Rué{”]_lsuis_aioraisﬂiS]wiEIcp} (4)
where
0<ag <1 ©)
and
I¢ é {1’2" : .,k}' (6)

The most commonly used continuous range is obtained by
setting a; to zero. A commercial stock may have the better
toleranced components taken out, thus 0 < @; < 1. Unless
otherwise stated, we consider

R, A {pl—-1<u <1 iel} Q)

The tolerance region R, is a set of points described by (2)
forallpue R,. Inthecase of —1 < pu; < 1,i€l,

R,A{DIG, =00 +ep, ~1<pu, < iel} (8)

which is a convex regular polytope of k dimensions with sides
of length 2¢;, i € I, and centered at ¢°. The extreme points
of R, are obtained by setting u; = +1. Thus, the set of
vertices may be defined as

A{plg: = 6]

The number of points in R, is 2*. Let each of these points
be indexed by ¢', i € I,, where

Iv é {1,2,. .o

¢i0 + Eill;, U; € {_l,l}’ ie I¢}

253, (10)
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Fig. 1. Illustration of regions R,,R:, and R.. If u = 0 then R, is
centered at ¢°.

Thus
R, = {¢*,0% - -,¢2"}.
The tuning region R,(p) is defined as the set of points

¢=¢°+ Ep+ Tp (11
for all p € R,, where
L
Ta| (12)

b

The components of p will be called slack variables since
they do not directly contribute to the objective function.
Some of the common examples of R, are

R, A{pl-1<p,<liely} (13)
or in the case of one-way tuning or irreversible trimming,

R,={pl0<p, <1 iel} 19
or

R,={p|-1<p; <0,iel} (15)

Unless otherwise indicated, the case given by (13) is
considered.
The constraint region R, is given by

R, A {¢lgi¢) =0, forallie I}

(16)
where

I, A {12, -,m} an

is the index set for the performance specifications and
parameter constraints. R, is assumed to be not empty. Other
conditions and assumptions will be imposed on R, as the
theory is developed further.

The definitions are illustrated in Fig. 1 by a two-dimen-
sional example.

A tunable constraint region is denoted by R_({), where ¥
represents other independent variables. Fig. 2 depicts three
different regions of an example of R.(¥). Overlapping of
these regions is allowable. The value of ¥ may be continuous
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Fig. 2. Example of three different settings of tunable constraint
regions.

" or discrete. R(¥) = R, in the ordinary sense if ¥ is a.

constant.

ITI. THE ORIGINAL PROBLEM P,

The problem may be stated as follows: obtain a set of
optimal design values {¢°e,¢} such that any outcome
{¢°,e.u}, n € R,, may be tuned into R, for some p € R,.

It is formulated as the nonlinear programming problem:

P,: minimize C(¢°s,t)

subject to ¢ € R,
where
¢=¢°+Ep+ Tp (18)
and constraints ¢%¢,f > 0, forall e R, and some p € R,.
C is an appropriate function chosen to represent a reason-
able approximation to known component cost data.

Stated in an abstract sense, the worst-case solution of the
problem must satisfy

RWNR, #&

for all p e R,, where (& denotes a null set.

(19)

IV. THE REDUCED PROBLEM P,

The original problem P, of the preceding section can be
reduced by separating the components into effectively
tuned and effectively toleranced parameters. Let

I A {ile > ty,iely} 20)
L A{ilt; 2 ¢,iely) 21
e Mg —t,iel 22)
and
t/ At —¢g,iel,. (23)

It is obvious that /, and I, are disjoint and I, v I, = I,.
Now, consider the problem

P, : minimize C(¢°s,t)
subject to ¢ € R,

where

foriel,
foriel,

si’#is
ti/pi,’

¢i = ¢io + (24)
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forall -1 < u; < 1,iel, and for some —1 < p;’ < 1,
iel,.

Theorem 1

A feasible solution to the reduced problem P, is a feasible
solution to the original problem P.

Proof: Given ¢°,z,t we will show that

D) e + tips = &'p, i€, (25)

2) e + tip; = t'p/ i€l (26)

under the restrictions on y;, p;, and p;’.
1) Since p; can be freely chosen from —1 < p; < 1, we
can let p; = —y; giving

(& — tdu = &/ 27

2) Forany —1 < p/ <
choose

landall -1 < y; < 1, wecan

(t — El)pl — &
L

_1<p‘ i”isl’

t; #0. (28)

Thus any point with components represented by (24) of
the reduced problem can be represented by (18) of the
original problem.

Intuitively, this theorem states the fact that a feasible
solution to a restrictive problem is also a feasible solution
to an appropriate less restrictive problem. The variable
transformation (22) and (23) may be considered as ex-
traneous constraints to be satisfied.

Theorem 2

A feasible solution to the original problem P, implies a
feasible solution to the reduced problem P, if R, is one-
dimensionally convex [3].

Proof: 1) We note, for i € I,, that

¢ — &+ tp (-1 <P — e+ 1, < 0 + (6 -

1K
<ol +&— 1<+ & + tip(1)
(29)

where p,(— 1) corresponds to 4; = —1and p;(1) corresponds
to u; = 1. If R, is one-dimensionally convex, the following
assumption

[¢i° — &+ tip,-(—l)} : [¢i° + o+ ripiu)] €R, (30)
implies that
ldn" + (6 — t,-)u,] €R, 1))

where we consider changes in the ith component only and
impose the required restrictions on yg; and p;.
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2) On the other hand, for i € I,, given feasible p,(—1) and
p«1) such that

&L — e+ tip(—1) < ¢i + & + tipf1) 32)
there exists a feasible p,’ such that
¢° — & + tp(—1) < @0 + (t: — &)p/
< ¢ + & + tipfl). (33)

This is true for ¢; = ¢; and can be seen for t; > ¢; by
rewriting this inequality as

—g; + tip(—1) <p/ < g + tipi(l)_

< (G4
ti - 8,- ti - Bi

Hence, if R, is one-dimensionally convex, the assumption

implies that
[¢io + (t; - Ei)Pil] € R

Thus, a feasible solution to the original problem can be
transformed to a feasible solution of the reduced problem
Pl.

(35)

A Geometric Interpretation

Let us define a projection matrix P as a diagonal matrix
such that

Dy
PA P2 (36)
Pr
where
_ [0, foriel,
P = {1, foriel,’ 37

The projection of a point ¢ may be denoted as ¢, = P¢.
It may be noted that the projections of two points ¢*,¢*) =
¢° + ae;, where e; is the jth unit vector, for j € I,, and some
constant o, coincide. The projection concept and the
introduction of slack variables provide a key to under-
standing the tuning concept.

Let

R, 2{p19° —¢e/ <¢,<¢° +e/,iel} (38)

and
R, A{p1¢° -t/ <, <90 +¢t/,iel} (39

denote the regions defined by the effectively toleranced and
effectively tuned parameters. Then consider the following
regions

Ry & {¢,10,=Po, ¢ e R} (40)

R, A R, N R, 41
and

Ry & {¢,10, = P, PR} (42)
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Fig. 4. Example of Re, & Reeep. R(#) for u = 0 is indicated, for
convenience.

Fig. 3 illustrates the definition of the regions. Any point
whose componerits are given by (24) lies in the intersection
of R,, and R,,. Suppose the projection of R, onto the
subspace spanned by the effectively toleranced parameters
includes the projection of that point. Then it may be tuned
into R,,, by adjusting the value of p,/, i € 1I.,.

The reduced problem P; may be stated as: solve a pure
tolerance problem (i.e., no tuning) in the subspace spanned
by the toleranced variables with R,,, as the tolerance region
and R, as the constraint region. In other words, the
regions defined by a feasible solution must satisfy the
condition that

R, < R (43)

etp = ctep*

Fig. 4 illustrates a case where R,,, £ R,,,,- An outcome,
for example, at ¢° cannot be tuned to R, within the effective
tuning range. However, there exists a solution to the original
formulation by tuning both components. R, is not one-
dimensionally convex in this case.

Special Cases
Case 1: I, = (¥, the Pure Tuning Problem: In this case,
R,, is the entire space and P is a zero matrix. R,,, is a single
point at the origin. The problem has a solution if
R, # & (49
Case 2: I, = (J, the Pure Tolerance Problem: In this case,
R,, is the entire space and P is a unit matrix:

Retp = R,, and Rctzp = R = R..
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The problem has a solution if
R, S R. EC)

From a tolerance-tuning point of view, the first case is
trivial theoretically. Except when there is only one single
point R, the pure tuning problem is equivalent to an
optimization of the nominal parameter values. On the
other hand, the pure tolerance problem is very important
from a practical point of view.

Extension of P, for Tunable Constraint Region

Three types of components can be identified when the
constraint region is considered to be tunable. They are
a) toleranced components, b) components tuned by the
manufacturer, and ¢) components tunable by the customer.
In this case,

¢ € R(Y)
where
&'l foriel,
¢ = ¢° + {t/p/, foriel,, (46)
t'pi'¥), foriel,

where I,,, identifies components b) and 7,. identifies com-
ponents c).

Setting the ¥ to a particular value will control the setting
of p;, i € I, such that ¢ will be in that particular constraint
region R (Y).

V. THE REDUCED PROBLEM P,

It is impossible to test all the points in R,,, to be in R,,,,.
In order to make the problem tractable a number of simpli-
fying assumptions could be made to obtain an acceptable
solution to the problem with reasonable effort. To this end
we replace the continuous range —1 < u; <1 by a

‘discrete set y; € {—1,1}, i € I,. Now, consider the problem

P,: minimize C(¢°e¢,t)
subject to ¢ € R,

where

foriel
foriel,

8ilﬂi>
t'pi',

¢i = ¢i0 + (47)

forall y;e {—1,1},iel,and some —1 < p;/ < 1,iel,.
Let us define the set of projected vertices (or the vertices
of the projected region) by

R, & {¢,1¢, = Pp,d € R,}.

The condition may be now stated as

(48)

R,, & Ryp

Theorem 3

A feasible solution to reduced problem P, implies a
feasible solution to reduced problem P; if R, is one-
dimensionally convex.

tep
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This is a pure tolerance problem in the subspace spanned
by the effectively toleranced parameters. For a proof in the
tolerance parameter space, see Bandler [3].

VI. THE OBJECTIVE FUNCTIONS

Several objective functions (or cost functions) have been
proposed [1]-[5]. In practice, a suitable modeling problem
would have to be solved to determine the cost-tolerance
relationship. Here, it is assumed that the tolerances and
tuning ranges (either absolute or relative) are the main
variables and that the total cost of the design is the sum of
the cost of the individual components.

The objective function should have the following
properties

C(@°%et) - c, ase - o0
C(¢%s8,t) > o, foranye; » 0 49)
C(@°et) > C(¢%e), ast—0

C(¢°%e,t) » o, for any ¢; - 0.

Suitable objective functions will be, for example, of the
form

(50)

where x; and y; denote the tolerances and tuning ranges,
respectively. In the case of relative tolerances or relative
tuning ranges x; = &;/¢;° x 100, y; = t,/¢,° x 100. We
may set the appropriate ¢;’ to zero if tuning is considered
- either free, or fixed or is not required. ¢; may be set to zero
if the corresponding tolerance is fixed.

VII. MATHEMATICAL EXAMPLE
Consider the constraints

¢ — ¢ —220 (51)
—¢,% + 164, = 0. (52)

A convex region R, is defined by these constraints.

We will take R, as an infinite set of discrete points u(i),
i=12,---,where —1 < py(/) < land —1 < p,(i) < L.
Thus a relevant problem may be formulated as follows.
Minimize

v

c=141 (53)
* _ & &
with respect to ¢, &,, ¢,°, and ¢,°, and subject to
g1 =620
g, = &y > 0
g3 =¢"=20
ga=¢"2=0 (54
g5() = (¢2° + &20,()) — (¢,° + &34, () — 2 = 0,
i=12- (55
96()) = —(9;° + e20,())* + 16(¢,° + £;1,()) = O,
i=12,--- (56)

where —1 < p(f) < land —1 < pu,(i) < L

159
Optimality requires that
E é Uy -‘ —I»¢1(l')W
1 , .
- ; =lu| + Zius(l) #2()
0 Usy -1
U Lu‘t_ |1
164, (7)
+ Y us(l) | —2u2(0)(h2° + eapa(@)) | (5T)
' 16
— 2" + e212(0))
U gy = = Uags = us()gs() = us(i)gs(i) = O,
i=12,--- (58)
Uy, Ugls(@)ue(i) = 0, =12 (59)

where u denotes a multiplier. To solve the above equations,
assume that ¢, &,, ¢,°, and ¢,° are not zero, therefore, set
uy, U,, Uz, and u, to zero. Minimize gs(i) of (55) and g¢(?)
of (56) with respect to u(i). This leads, respectively, to

(92° — &) — (@:° +8)—220 (60)
using u(i) = [1 —1]7 and
—(4520 + 32)2 + 16(4”10 —&) =0 (61)

using u(i) = [—1 1]7. The optimality conditions (57)-(59)
are correspondingly reduced yielding the solution

g =05
g, = 0.5
¢,° =45
$,° = 1.5.

Consider next the problem of minimizing

c=1

€2

(62)

with respect to ¢,’, &,, ¢,°, ¢,° and p,(i), and subject to

g1=4"20
gz = 82 2 0
93 =¢,°20
gs= ¢ =0 (63)
gs =01 —-—->0 (64)
é,
96(i) = (92° + e1,()) — (¢,° + t1'21'(i)) -220,
i=12, (65)
9:() = —(9;° + e1,))* + 16(d,° + t,'p,'()) = 0,
P=12,- (66)
gsti) =1 — py’(i) 2 0, i= 12, (67)
T g9(l) =1+ pll(i) = 0, i=12--. (68)



160

Here, ¢, is considered fixed at 0.5 and there is a maximum
effective tuning range of 10 percent. Hence, the first com-
ponent does not contribute to the cost. The effective tuning
range ¢’ = t; — 0.5 is used as a variable.

The optimality conditions require that

0] [u (—511—0 ~p10)
—;i‘z Uy Y Ba(i)
o | = " +us| ¢ + iZuﬁ(i) i
¢1002
0 U, 0 1
| 0 | o] 0 ] | ~t,'e; ]
' 16p,'() ]
-2(¢,° + &x2(D), ()
+ Z u,(i) 16
' 245 + eapna(i)
16¢,’e; J
[ 0 ] [0]
0 0
+ Z ug(@| 0 | + Z uy(i)| 0 . (69)
i 7 o |
| —€i] €]
ugy = = usgs = Ug(i)ge(i) =+ = uo(i)go(i) = 0,
i=12 (70

i=12. (1)

Minimize g¢(i) of (65) and g,(i) of (66) with respect to
pa(i). We use u,(i) = —1in (65) and u,(i) = 1 in (66) for
this purpose. The corresponding p,’({) = —1 and p,'(i) = 1,
respectively, are obtained by maximizing g¢(¢) and g,(i) with
respect to p,'(i). This yields the solution

Ut '9”5;“6(0" * '3u9(i) 2 0’

ty’ = 0.5432
e, = 1.444
$,° = 54321
$,° = 8.3333.

As expected, the inclusion of tunable elements can in-
crease the tolerance on the components, The tolerance of
the second parameter increases frome, = 0.5to¢g, = 1.444
when the first component is allowed to have a maximum
effective tuning range of 10 percent. This means that an
actual absolute tuning of 1.0432 and a tolerance of 0.5 are
designed for ¢;. The result can only be accomplished by
allowing the nominal point to move. For example, the first
component moved from 4.5 to 5.4321, a shift of 20 percent.
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VIII. FREQUENCY DOMAIN IMPLEMENTATION

Data for a specific problem is contained in a data vector
a' which has the form

(72)

gvn
>
T uhEw >

where ¥ is an independent parameter denoting frequency
or any number to identify a particular function for which
the vertex ¢ is chosen. u is the vector associated with ¢’,
in particular,

k r
143 [u] 271 pre{-11). (73

i=1 2
m, is the total number of distinct vectors &'. S is a specifica-
tion and w a weighting factor associated with each . In our
present work,

W = +1,
=1-1

if S is an upper specification
if S is a lower specification.

The performance constraints may now be formulated in

the form of :

g=wS—-F)=0 (74)

with appropriate subscripts. F is the circuit response func-

tion evaluated at sample point ¥ and point ¢ which is given
by .

¢ =Py + Y (6,° + t/p/(r)e;.

Jelg

(75)

The projection matrix P and the index sets 7, and I, are
fixed for a particular problem. They are determined before
optimization takes place.

Let the n optimization variables be denoted by x in-
cluding the variable nominal values, tolerances, tuning
variables and all the appropriate slack variables p;'(r),
je I, re I, Let m be the total number of constraints which
include the performance specifications, slack variable
bounds, parameter bounds, and any other extra constraints
not considered above. In general, for linear network design
in the frequency domain

n=ko+k + k(1 + n,) (76)
and
4
m= [Z n,,(i)] + 2k, + -+ an
i1

where ky, k,, and k, are the number of variable nominal
parameters, toleranced and tuned parameters, respectively;
n, < 2* is the number of distinct vertices chosen; n¥ is the
number of frequency points considered; #,(7) is the number
of vertices chosen at the ith frequency point and 2km, is-
the number of slack variable bounds.
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L, Ly

1 —[C 1

Fig. 5.

Circuit for LC low-pass filter example.

TABLE 1
SPECIFICATIONS FOR LC Low-Pass FILTER
Frequency Sample Insertion Loss Type Weight
Range Points Specification w
(rad/s) (rad/s) (dB)

0-1 0.45, 0,50, 0,55, 1.0 1.5 upper (passband) +1
2.5 2.5 25 . lower (stopband) -1
TABLE 11
DaATA FOR Low-Pass FILTER

?\\‘ 1 2 3 . 5
T 6 6 6 8 1

+1 +1 +1 +1 -1
8 -1 -1 -1 +1 -1
+1 +1 +1 +1 -1
v 0.45 0.50 0.55 1.0 2.5

Low-Pass Filter

The LC low-pass filter shown in Fig. 5 is considered
[5], [6]. Table I summarizes the specifications. The critical
vertices used in the data vector a’ can be obtained from
published vertex selection schemes [ 6]. These schemes utilize
first partial derivative information at some local points or
local regions to predict the worst vertices. Very often up-
dating of @' is required at suitable intervals. In this case, the
numerical experience we have gained previously from the
tolerance problems [5], [6] allows us to chose the minimal
set of vertices. These are: ¢° at Y = 0.45, 0.50, 0.55 rad/s;
¢® at Y = 1.0 rad/s and @' at Yy = 2.5 rad/s, where ¢ =

[L,CL,]". Updating was not required in this example -

except when all the three components are toleranced and
tuned simultaneously. Table II summarizes the data for
the filter.

Several cases have been studied [9] but the results of the
case L, tuned with C and L, toleranced will be presented.
The objective function used is based on the relative tolerances
of C and L, in the form

(78)

161

where, assuming #c = #;, = 0, and some fixed value of
gr,, we take

x = ¢,°=L°

X, = ¢° = C°

X3 = ¢3° = L,°

X2 =t' =1, —¢,

xs? =, = g

Xe2 = &3 = &,

The cost of element L, is assumed fixed. It, therefore, is
not included in (78). The last three transformations are
chosen to avoid changes of sign. There are three distinct
projected vertices: ¢,°, ¢,°, and ¢,'. The projection matrix
in this case is

0 .
P = 1 (79)
1
Therefore, the other variables may be identified as
X7 = p4'(6)
xg = py'(8)
xo = py'(1). (80)

Substituting the numerical values from Table II irito (75) we
have the following:

a'.a’,a’ = ¢ = P¢® + (¢,° + 1,'p,'(6))e,

(X1 + X4%%x,]
= X2 — xs:z
| x5 + %6 |

a* = ¢ = Pp® + (¢,° + 1,'p,'(8))e,

[x, + x4%x3]
= x2 + x52
| x5 + X6 ]

@ =¢=Po + (¢,° + t,/p/(D)e,
[, + x3%%x]
= x2 —_— sz
| X3 — X6

81

(82)

(83)

The performance specifications g;, i = 1,2, - -,5, may now
be formed. Additional constraints are given by

Is+2i-1 = 1 + X645
Gs+2i=1— x6;i
g1z = 1, — X3°[x,.

} =123 (84)

The last constraint g, is designed to limit the effective
tuning range to ¢,.

The resulting nonlinear programming problem (9
variables, 12 constraints) is solved by a least pth optimiza-
tion algorithm due Charalambous [10] and the quasi-
Newton method developed by Fletcher [11] and Gill and
Murray [12]. The starting point corresponds to the optim-
ally toleranced nominal point and arbitrary small tolerance
and tuning values. Typically, a few hundred function evalua-
tions with less than 30 s of CDC 6400 computing time is
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TABLE III
L, TuneD, C AND L, TOLERANCED
Parameters tr = 0.2 tr = 0.1 tr = 0.05
Lf 2,0932 2.2442 2,1053
c? 0,9360 0.9059 0.9062
Lg 1.7718 1.7569 1.7920
100 ti/L;’ 20.00 % 10.00 % 5.00 %
100 ez/CO 15.99 % 14,23 % 12,60 %
100 ¢,/L3 21.62 % 18.41 % 16.23 %
91(6) -1,0000
ol' (8) -1.0000
o; (1 1.0000
nso m =12

+ For the optimally toleranced solution [5] L,° = L,°

1.9990,
C° = 0.9056, 100e,/L;° = 100e5/L,° = 9.89%, 100e,/C®

7.60%;.

required. Table III summarizes the results. Three different
tuning ranges are used. The 5-percent tuning of L, increases
the tolerances of the other two components by as much as
65 percent. A 10-percent positive and negative shift is
obtained for L,® and L,°, respectively. C? is shifted slightly.
" The slack variables assume values of —1, —1, and 1,
indicating that the worst cases do occur at the vertices and,
correspondingly, the tuning is set to extreme values.
Tuning of C presents a very interesting case. The sym-
metry property observed in the pure tolerance problem is
preserved. Due to this symmetry, a 5-percent tuning range
of C produces an increase of 90 percent in the tolerances
of L, and L,.
Suppose the designer has no prior knowledge of the
choice of the tuning component. We consider an objective
function of the form

C=i[¢—fo+ci]. (85)

=1 L¢g ¢

One additional vertex ¢3 is considered in order to bound the
solution during optimization. We omit details of the con-
straints, and summarize the final results in Table IV for
different c. There are 21 variables and 36 constraints, hence,
the computational effort has substantially increased over the
previous case. The advantage gained in the general formula-
tion is that the optimization will automatically choose the
most appropriate component for tuning, which is C in the
objective of (85).

The same designs can be obtained by the reduced formula-
tion using C as a tuned and toleranced component and L,
and L, as toleranced components.

High-Pass Filter

This problem was suggested by Pinel and Roberts [13].
The circuit diagram is shown in Fig. 6 and the basic specifi-
cations for the design are listed in Table V. The insertion
loss relative to the loss at 990 Hz is to be constrained as
indicated with resistances Rs and R, related to Ls° and
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TABLE IV
OpTiMAL TUNING
Parameters c =10 c =20 ¢ = 50
L? = Lg 1.8440 1.9221 2.0492
C0 1,1730 1.0486 0.9069
0 0 ;
= 62 % 3.84 % 16.15
100 :l/L1 100 a:s/L2 31.6 2 %
100 sz/c0 31,62 % 22.36 % 14,14 %
100 tl/L;] = 100 ts/Lg 2,54 % 0.00 % 0.00 %
100 t,/c’ 54,31 % 35.89 % 14.14 %
01(6) -1.0000 -0,7165 0.9743
02(6) 0.1645 0,2466 1.0000
o3 (6} -1.0000 -0,9992 -0,9846
91(8) -1,0000 -1.0000 -0.8813
92(8) -1,0000 -1.0000 -1.0000
p5(8) -1.0000 -1.0000 -0.9876
() - 1.0000 0.9887 0.9933
02 (1) 1,0000 1.0000 1,0000
Py (1) 1.0000 0.9989 0.9029
0y (%) 1. 0000 0,8433 -0.6051
P, (3) -0,1645 -0.1468 0.6434
p5(3) 1.0000 0.8944 0.6441
0 o 4,14 %
100 EI/L1 = 100 53/L2 29,08 % 23,84 % 14, %
100 ‘2'/C0 22.69 % 13.53 % 0.00 %
n =21 m= 36
4 C, Cy
i i i
ol ol
Ls L,
13.2k 10k
Rg Ry

Fig. 6. High-pass filter.

TABLE V

SPECIFICATIONS FOR HIGH-PAss FILTER

Frequency Range Basic Sample Points Relative

Wei

ght

(Hz) (Hz) Insertion Loss w
(dB)
170 170 45, -1
360 360 49, -1
440 440 42, -1
630 - 680 630 4. +1
680
710
680 - 1800 725 1.75 +1
740
630
650
680
630 - 1800 860 -0.05 -1
910
930
1050
Reference Frequency: 990 Hz
0
0 0 ZHQQOL;J 2n 990L7
RS‘ R, related to L5 and Lo throughqQ = Rs = = 1456
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L,° with constant Q. The terminations are fixed, the
designable parameters being C,, C,, Cs, C4, Ls, Cs, and L.
The objective function throughout was taken as

7 ¢'0
c=13 % (86)
i=1 &
where
[ C,%7 e, |
C20 8C1
C3o 8C3
¢° =|C,° g = |&c,
L50 aL’
Ce° Ec,
\.L7o_ - _8L7J

The optimization package used here is DISOPT [14],
which has been previously employed in worst-case tolerance
problems [6]. The same quasi-Newton unconstrained
minimization procedure as for the work described in the
previous section is incorporated into DISOPT. The extra-
polation feature [15] was chosen to accelerate convergence
to the constrained optimum.

Verification of the designs to be described was carried out
using all 27 vertices plus the nominal point at 170, 360, 440,
630-680, and 680-1800 Hz. Forty-two logarithmically
spaced points were taken for the latter interval, and 8 for the
former interval.

Table VI indicates the effort required to obtain the results
of Table VII. Because of the complexity of the problems
preliminary runs of the program were required before the
final number of constraints were established. This informa-
tion along with a realistic assessment of cost is given.

Case 1: No Tuning (t = 0)

Table VI summarizes the particular frequencies, specifica-
tions and the particular vertex number employed to obtain
the final tolerances listed in Table VII. Table VII also lists the
shifts in nominal parameter values with respect to those of
an uncentered design [7], [13].

Case 2: 3 Percent Tuning for Ls

Results corresponding to the ones for Case 1 are tabulated
in Tables VI and VII. Note that all the tolerances have
increased. Fig. 7 shows the nominal response as well as the
worst upper and lower outcomes based on all 27 vertices.

A more detailed verification of the results was made.
Sixty logarithmically spaced points were taken from the
critical region 630-680 Hz as well as 40 from 600-630 Hz.
All the vertices were checked plus the nominal point,
followed by 4000 Monte Carlo simulations uniformly

* distributed in the effective tolerance region. No violations
were detected, and the upper and lower limits of response
given by the vertices bounded the results from the Monte
Carlo analysis except at 638.2 Hz, where the lowest relative
loss obtained from the vertices was —0.0243 dB, whereas the
Monte Carlo analysis yielded —0.0246 dB.

As a further check on the optimality of these results, Ly
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TABLE VI
DATA FOR OPTIMIZATION OF HIGH-PAss FILTER

Vertex Number
Frequency s W

(Hz) (dB) Case 1 Case 2 Case 3 Case 4
No Tuning L. Tuned L. and L, Tuned L., Tuned
5 5 7 7
170 45 -1 8 8 8 8
360 40 -1 48 48 48 48
440 42 -1 128 128 128 128
630 4 +1 1 1 1 1
630 -0.05 -1 60,100,104, 58,60,100, 60,108,120 60,87,95,
108,120,126 104,108,120 100,104,108,
126 120,126
637 -0.05 -1 - - - 87
640 -0.05 -1 - 58 108 52,58,60
643 -0.05 -1 - - - ’ 85,93,117
650 -0.05 -1 nominal,l12, nominal,12, nominal,12,34, nominal, 12,
50,58,102 34,42,50,58, 42,44,58,106, 36,42,50,58,
102,106,126 126 85,93,94,
102,106,126
658 -0.05 -1 - - 42 58,69,85
665 -0.05 -1 - - ‘34,42 34,58
670 -0.05 -1 - - - 2
680 1.75 +1 123 123 123 123
680 -0.05 -1 2,6 2,6 2,6 2,6
710 1.75 +1 43,83 43,83 43,83,123 43,83
725 1.75 +1 43,83 43,83 43,83 43,83
730 1.75 +1 - - 43,83 43
740 1.75 +1 43,83 43,83 43,83 43,83
860 -0.05 -1 118,126 118,126 118,126 118,126
910 -0.05 -1 118,126 118,126 118,126 118,126
930 -0.05 -1 118,126 118,126 118,126 118,126
1040 -0.05 -1 - - - 3
1050 -0.05 -1 3 3 3 3
Number of R?sponse 31 37 37 55
Constraints
Total Number of 5 51 51 69
Constraints m
Number of Variables n 14 14 14 14
Starting Point Given : for Casel
by Pinel [13} OPTimum
Number of Trial 3 1 2 1
Runs
Total Computing 15 5 6 7
Effort (min)t
Computing Cost $94 $31 $37 $44

Including Trialst

1 On a CDC 6400.

was allowed to be both toleranced and tuned as distinct
from being effectively toleranced from the point of view of
optimization. The same vertices, an additional 25-p variables
and 50 additional constraints on the p variables were used
without any significant improvement in the results. The
values of the p variables confirmed the assumption that Ls
should be effectively toleranced for 3 percent tuning.

Case 3: 3 Percent Tuning for Ls and L,

As indicated by Table VII a further improvement in all
tolerances has been obtained.
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Fig. 7. (a) Passband details of optimized high-pass filter (Case 2).
(b) Stopband details of optimized high-pass filter (Case 2).

Case 4: 3 Percent Tuning for L,

The results for this problem (Table VII) are slightly
worse than those for Case 2. A slight violation of the
specification at 658 Hz was detected. We conclude that if
only one inductor is to be tuned, Ls should be chosen.

IX. CoNCLUSIONS

A theory of optimal worst-case design embodying center-
ing, tolerancing and tuning has been presented. The concept
of a tunable constraint region that allows variable specifica-
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TABLE VII
RESULTS FOR HIGH-Pass FILTER

Parameters Case 1 Case 2 Case 3 Case 4

No Tuning Ls Tuned LS and L7 Tuned L7 Tuned
c tolerance (%) 5.71 6.77 7.90 6.63
1 nom. shift(%) +18.1 +17.8 +18.3 +17.6
c tolerance (%) 4.33 4.97 5.32 4.77
2 nom. shift(%) +16.2 +15.2 +14.4 +15.3
c tolerance (%) 4,72 5.81 7.23 5.83
3 nom. shift(%) +16.6 +18.0 +18.8 +17.8
¢ tolerance (%) 4.54 5.03 5.15 4.78
4 nom. shift(%) ) -3.8 2.2 -1.2 -3.1
L tolerance (%) 3.29 3.95 4.44 3.82
'S nom. shift(%) 3.0 3.0 4.3 -4.1
c tolerance (%) 6.32 7.05 7.27 6.66
6 nom. shift(%) -7.3 -5.1 -3.6 -6.0
L tolerance (%) 3.64 4.34 5.04 4.32
7 nom. shift(%) -6.4 7.9 -7.9 -6.3
*
Cost 157 135 121 138

* Violation of specifications. Relative loss = —0.052 dB at 658 Hz.

tions as set by the customer has also been incorporated.
This may find application, for example, in tunable filters.
The purely toleranced and purely tuned problems become
special cases. Further simplification has been discussed in
the light of one-dimensional convexity.

As expected, the inclusion of tunable elements can in-
crease the tolerances on the components. The results seem
to justify the reduction of the general tolerance-tuning
problem into one containing effectively toleranced and
effectively tuned components, where appropriate. If the
separation of the components is not decided in advance, the
general problem with the cost function reflecting both
tolerances and tuning ranges is appropriate, since an
optimization program requires an explicit number of
variables and constraints in advance.

A component may be both tuned and toleranced simul-
taneously. Thus, one can represent the effects of an un-
certainty of a tuned component if the tuning range is larger
than the tolerance. On the other hand, if the tolerance is
larger than the tuning range (see, for example, Table VII),
it may be considered to be a toleranced component with
some small tuning capacity. The tuning range may or may
not appear in the objective function. The different weight-
ings of tuning and tolerancing in the objective exhibit the
flexibility of the formulation. With a very heavy weighting
in the tuning, we will obtain a solution equivalent to a pure
tolerance problem. Zero tuning is automatically indicated
by the result of the formulation. Reducing the weighting
will increase the tolerance as well as the tuning with a net
effect of reducing the effective tolerance &;/ = ¢; — ¢; until
a crossover occurs from effective tolerance to effective
tuning. Beyond that, the effective tuning value will continue
to increase until a threshold value occurs. Below the thresh-
old, the solution in terms of effective tuning and tolerance
problem is unaffected. The tolerances of other components
‘will continue to increase with decreasing weighting on the
tuning.

A cost function tending to maximize tolerances and
minimizing tuning has been implemented successfully in this
context. For the high-pass filter the 3-percent tuning range
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on the inductors was considered free, thus tuning did not
enter into the objective function. A reduced problem involv-
ing effective tolerances was found adequate since, as shown
in Table VII, the tolerances exceed the tuning ranges. A
good starting point for the tuning problem is a worst-case
toleranced solution. The small tuning ranges in the high-
pass filter problem meant that relatively small nominal
shifts were obtained.

It may be added that, as far as the authors are aware, this
seems to be the most general formulation to date dealing
with the centering, tolerancing and tuning problems at the
design stage.
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