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Abstract—This paper presents, explicitly, an approach to the exact
calculation of group delay and its sensitivities with respectto component
parameters basedon the adjoint network conceptand applicable to linear
time-invariant circnits. In general, no more than four analyses are

reqnired and the computational effort is only moderately more than is

necessary for a single analysis. The resnlts presented are in a form

particularly suited to the compnter-aided design of microwave circuits
and include useful tables of sensitivity expressions.

I. INTRODUCTION

T HE applicability of the adjoint network concept [1],

[2] to the evaluation of second-order network sen-

sitivities [3], [4] has been known for several years. The

computation of group delay [5], [6] and its sensitivities

with respect to component parameters [5] using these

ideas has also been suggested. The observation by Temes

[5] about the use of perturbation in evaluating group delay

sensitivities and the recent implementation by Bandler

et al. [7] of perturbation techniques might suggest that

exact computation is impractical.

It is the purpose of this paper, therefore, to present

explicitly,. with the aid of a microwave filter example, a

suitable exact approach. In general, no more than four

analyses are required and the computational effort is only

moderately more than is necessary for a single analysis.

The authors are not aware of any similar presentation in the

literature.

II. THEORY

The exact group delay of a linear time-invariant network

N can be evaluated, using the adjoint network concept,

and requires two network analyses, one of N and one of its

adjoint network ~.

The group delay can be defined as [5], [6]

(1)
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where V. is the output voltage. The sensitivity of TG with

respect to the variable parameter ~i will be given by

In (2), dVO/~@i and 8Vo/&v are known from the analyses of

N and I?, where R is excited only by a current source lo

at the output port. Only (d2 Vo/t?#i&o) has to be evaluated.

Second-Order Sensitivities

Assume that the elements of N are described by a hybrid

matrix, namely,

The elements off? will then be described by [2]

[1[I.j

1[ 1

YjT –Mj= ~mj

V,j = –AjT ZjT Ibj ‘
j = 1,2, “ “ “ ,n. (4)

Using Tellegen’s theorem we may write [2], [8]

[1[Va= v,=]~ [“1- [1== 1,=] ~

= j>, [~aj= ‘bj’] [~] -

where the sign convention adopted

i [Zaj
T ~bjT ‘aj

IIV]j=l bJ

(5)

is illustrated in Fig. 1

and where we assume an unindexed equation of the form

of (3) describes the complete network with subscript a

denoting voltage excited ports and b current excited ports.

Applying the linear operator d2/&#@ to the voltages and

currents of N, where @ and V are variable parameters, and

taking V. and 1~ as discrete and independent, we have as an

extension to (5) [3], [4], [8]

network

3
+
v, t 1,

on Simulation, Optimization, ~nd Control, and the Department of
Electrical Engineering, McMaster University, Hamilton, Ont., Canada. Fig. 1. Sign convention used.
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Differentiating (3) with respect to * and ~, we obtain

[1V~j
Zbj

(6)
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&yjT &MT”j

= ,~, [VajT ZbjTl a~a$ a(h?+
82AjT 82ZjT

a~a* a~a$.

[i3Yj8Ajl
+ P%%][2?3]][-21“)

ai ai

L 1
+ad a~

.,

aMj tq
To evaluate (9) first-order sensitivities of voltages and

a~ ad
currents of element j with respect to ~ and U) have to be

found. Considering the ports of the jth element as the ports

of interest we can- find-the first-order sensitivities needed.

“[?1+[2431”Examining (9) we find that the hybrid matrix c!f the element

Rearranging (6) and substituting (7) in it we get

+ [%%1

+[%%

f3YjT 8MjT

~~

c?AjT 8ZjT

a*, a*

aYjT f3MjT——
a~ a+

aAjT azjT——

[ 1[+82vajTf?2zbjTyjT—.&#@,8$8$AjT

MjT

zjT 1

(7) j is differentiated with respect to @ and with respect to v.
If the parameter @ does not belong to the jth element the

derivative of the hybrid matrix with respect to @will be zero.

The same condition occurs with the parameter $. Assuming

that each element has one parameter, k additional analyses

of i? will be needed to find (9), where k is the number of

variable parameters [4], [9].

Group Delay Sensitivities

Considering a single output voltage VO and setting the

adjoint voltage excitation vector Va to zero, and replacing

the parameter @ by @i and * by co, (9) will be (for @i in

the jth element)

azvo ~— , . [vajT
a~ii%o

~bjT]~%#l[--~,

Ladiao aoiaco-1

‘jzl[~%ifl1%3:][-21
a; a;-

‘[%%1~fq [-it
a~i d~i

(8) (lo)

The first term in (10) can be found from the currents and

voltages in N and R. Note that OJis common, in general, to

- V~j[1lbj“
Using (4) which defines the adjoint network I?, (8) will be all the elements.
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Let us define ~j to be

ayj aAj

am a.

1

aikfj azj “—.
au am

(11)

Introduce now a new network f?’, which is the same as ~,

but excited at the ports of each element by current and

voltage sources ~.j’s and ~~j’s, where

[-x.]~EjT[-21 (12)

Consequently, by conventional adjoint network theory

where Gi’ is the sensitivity component of N with respect to

~i, known in terms of the voltages and currents in N and
1?’. The second term in (10) is now Gi’.

Next, consider a network N’, which is the same as N,

but excited at the ports of each element by current and

voltage sources I.j’s and Vbj’s, given by

(14)

so that in N’

Differentiating (3) with respect to co gives

(16)

Comparing (15) and (16), we see that

1-1
a Vaj

am [1_ VJ’

8Zbj – Ibjt (17)

%

so that the third term in (10) can be calculated from the

currents and voltages in N’ and ~.

This means that the network response, its sensitivities,

the group delay, and its sensitivities can be evaluated by at

most four network analyses, independently of the-number of

variable parameters. This approach is useful for networks

with a large number of parameters.

Table I shows Ej for some elements and for two possible

hybrid-matrix formulations. Note that the first-order

sensitivity components with respect to co used in the cal-

culation of the group delay can be found by multiplying Ej

by appropriate vectors of the voltages and currents in

N and R. Table II shows second-order sensitivity expressions

needed in evaluating the first term of (10). To avoid num-

erical problems when OM = rc/2 Table III and Table IV

have to be used when appropriate.

III. INTERPRETATION

General Networks

If the nodal admittance matrix is used for the analysis,,

each two-terminal element will have a current source

associated with it. This source for N’ is

~j,. _ ayj–Gvj (18)

where Yj is the admittance of the element and Vj is the

voltage across the element. The source for the second

adjoint analysis is

Fig. 2 shows a two-terminal element and

connected to it for the second analysis.

\

(19)

the current sources

TABLE I
ELEMENTDERIVATIVESWITHRESPECTTOFREQIJSNCY

inductance
1

jL

jw2L

{

capacitance jC
1

j 0J2C

short-circuited

lossless transmission line=
JYT CSC2LUT j ZT sec2uT

open-circuited

lossless transmission Iinea
jYT sec20m JZTCsczlm

lossless transmission -jyT CSC UT

1 ine a
[ ‘:: :::l’ZTCSCUT [:: ::1

* For transmission lines, Z is the characteristic impedance, Y is the characteristic admittance, aid ~ is the delay time.
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TABLE II
SECOND-DERIVATIVESENSITIVITYEXPRESSIONS

:=

Element
a2X a2z. *i

aoiau a~iaw

1
Inductance j

W2L2
L

capacitance j
1 c

jw2C2

-jY2 T CSC2UT jT sec2 UJT z
short-circuited

lossless tray- jT CSC2 UT -jz2T secz UT Y

mission line

j’t CSC2 WT (1-2 WT COt UT) jZ secz UT (1+2 UT tan w.) T

-jY2 T secz UT ]T CSC2 UT z
open-circuited

lossless trans- jT secz UT -jz2T CSC2 UT

mission Imea

Y

jY 5ec2 LOT (1+2 UT tan UT) jZ CSC2 UT (l-2 UT cot uT) T

[

-CSC UT cot UT

JYz T CSC UT 1 [CSC UT cot UT

j T CSC UT

1

z

COt UT -CSC UT COt UT CSC WT

[

-CSC UT cot UT

1’ [
CSC UT cot UT

-]? Csc UT .jZ2Tcsc UT

1

Y

cot UT -Csc UT

lossless

COt UT CSC UT

transmission

{[

-CSC WT

1

cot UT

lmea

{[

Csc UT COt UT

-]Y CSC UT ]z CSC UT

COt UT -CSC WT COt UT CSC INT 1 T

[

‘2CSC UT COt UT
2

c0t2 UT + Csc UT

U

~
2CSC UT COt OJT

-UT

11

CSC2 UT + COt2UT

Cotz WT + CSC2 UT -2CSC UT COt OJT ‘UT lcsc2uT+c0t20T 2CSC U? COt UT

`For trmsmission lines, Zisthe characteristic impedance, Yisthecharacteristic admittance, andcisthe delay time.

TABLE III
ELEMENT DERIVATIVES WZTHRESPECTTO FREQUBNCYWHEN CO.= ir/2

TABLE IV
SECOND-DERIVATIVESENSITIVITYEXPRESSIONSWHENOJT = 42

.
Element

-%

-G- 5

short-circuited

lossless transmission ]YT

line

open-circuited

lossless transmission
j ZT

I ine

[]

1 0

.1

-1 0

lossless transmission j YT J ZT

1 ine
o 1 01

For a three-terminal element two current sources will be

connected to its ports. These sources are of the form

(20)

The element and the two sources connected to it are shown

in Fig. 3. The sources for the adjoint network are derived

in a similar way.

In general we need the current excitation vector for the

second two analyses, and using (1 8)–(20) these vectors can

Element

short -circu~t ed .,Y2T

10ss1.ss tra,nsm,s,, on IT

l,ne ,Y

open- c,r!xnted

10s51.ss transnmssl.n

line

r 10

-,Y2T

1. 10-
Iossless t,a”sm,,,,on

1 me .0 IT

1.

-IZ2T
1~

[1

]7 o

0 ]?

[1.,Z2T o

0 -, Z2,

z

be expressed by

and

(21)

(22)
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A ~:~

Fig. 2. Two-terminal element in the original and adjoint
and current sourcesassociatedwith the element.

:?~, $:m~:

network

--- 0 ! 1 1 0

Fig. 3. A three-terminal element and the sources connected to it in
the second original network analysis.

where Y is the nodal admittance matrix, ~ is the node

voltage vector in the first original network analysis, and ~

is the node voltage vector in the first adjoint network

analysis.

The matrix d Y/&a will have the same structure as the

nodal admittance matrix, and we can take advantage of this

fact and build up the d Y/&a matrix at the same time and

in a similar way as building the Y matrix. Hence the ex-

citations are found by matrix multiplication. Using this

approach only four analyses are needed to find the group

delay and its sensitivities. Actually, LU factorization [10]

is performed once and the forward and backward sub-

stitutions have to be repeated.

Cascaded Networks

In cascaded network analysis the network is considered

to be a chain of two-port networks. Each two-port represents

an element expressed by its hybrid matrix. Assume that the

cascaded network has one input port and one output port

as shown in Fig. 4. The group delay and its sensitivities can

be found by the following steps.

Step 1: In the first original network analysis we assume

that the current through the load has a certain value 1~.

We carry out the analysis step by step starting from the

load end. Suppose that the computed voltage at the gen-

erator end is V9Cand the actual generator voltage is v~..

Since the network is linear, the actual values for all voltages

and currents are found by multiplying the computed values

by the factor V,./V,C.

At this stage the sources for N’ can be found. The shunt

elements expressed by their admittances will have current

sources connected across them which are evaluated as (18);

on the other hand, the series elements expressed by their

impedances will have voltage sources connected with them

in series as shown in Fig. 5. For a certain element j con-

nected in series the voltage source corresponding to this

element is

(23)

where Zj is the impedance of the element and Ij is the

current passing through the element.

Fig. 4. Cascadedoriginal and adjoint networks.

r--m--r--~
*---J ~__!__J =-- c- L_.__j G ---0-L.-9

output

Fig. 5. Network representing N’ or I?, each with its appropriate
sources.

Step 2: In the first adjoint network analysis, the generator

end is short-circuited and a current source lo is connected

to the load end. Assuming a value for the current at the

generator end, the analysis is carried out from the generator

end to the load end. If ~OCis the computed value for the

current source and lo. is its actual value, the actual values

of adjoint voltages and currents are found by multiplying

the computed values by ~O#OC. The sources for the next

adjoint analysis can be found in similar way as the sources

for the second original network analysis.

After the evaluation of Step 1 and Step 2 the group delay

is computed.

Step 3: To get the group delay sensitivities, first we excite

the original network as previously discussed. The generator

end is short circuited and the sources connected to the

corresponding elements are as shown in Fig. 5. As we can

see there is no source at either end ‘of the network, and in

order to perform the analysis we have to find the Th&enin

voltage at the output end [11]. Applying Tellegen’s theorem

we have

VL’10 = ~ Ii”fi – ~ Vj”lj (24)
idy jdz

where

V~’ Th6venin voltage at the output;

10 adjoint current excitation;
Ii’s current source corresponding to shunt element i;

Pi adjoint voltage across shunt element i;

Iy index set for elements connected in shunt in the

network;

V~ voltage source corresponding to series element j;

Ij adjoint current through series element j;

1, index set for elements connected in series in the

network.

Recall that the prime superscript stands for the second

analysis. We have to note that the adjoint network of the

second original network will still be the adjoint of the first

original network and all the pi and ~j are known.

Since the output voltage is known at this stage we can

carry out the second original network analysis, from the

load end to the generator end, and hence the voltages and

currents of this network are found.
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1 11

bnput output

Fig. 6. Seven-section bandpass filter with sources required for the
analyses.All sections are quarter-wave at 2.175 GHz. ZI = Z7 =
0.606595, Z.= Ze = 0.303547, Z,= Z, = 0.722287, Z.= 0.235183.

TABLE V
GROUPDELAYAND ITS GRADIENTS

Normal I z“ed frequency 0.5 0.6 0.7 0,8 0.9 1,0

Group delay n S.C 2.4864 1,18034 0.89524 0,78201 0,71711 0.71409

aTG 2TG

a:l az7 1.4736 0.?9952 -0.11745 0.14144 0.13617 -0.09275

aTG 2TG

azz az6
-5.9195 -1.0742 -0..38574 -0.33653 -0. ?9703 -0,22951

?TG
aTG

az. - az5
3 9441 0.45418 0,28131 0.14503 0 12?01 0.1.5619

aT;

q
-12.513 -1.2170 -0.52517 -0.72480 -0,49986 -0.38233

aTG aTG
-1.4355 0,22932 1.58Z2

a,. = ~
O 40020 1.5882 1.1Z76

1/
3TG 2TG
a,2 a,6

-Z?.016 -3. Z718 -0.35544 -O 11376 -0.55457 0,60610

aTG ~TG

aT3 - 2.5
-34.386 -2.8021 -1.7930 0.16148 1 6499 0.98148

3TG
-34.418 -2.3702 0,60009 -1.2475 -0.84414 0.78228

a~4

Step 4: For the second adjoint network analysis, the

idea of using Tellegen’s theorem to find the Norton current

[11] at the generator end is applied. The second adjoint

network is the one shown in Fig. 5, and applying Tellegen’s

theorem we have, analogously to (24)

V~l~’ = ~ IjFj’s – ~ fi~~’s. (25)
j=lz islY

Knowing the Norton current at the generator end, the

second adjoint analysis is performed from the generator

end to the load end, and hence the voltages and currents of

the second adjoint network are known.

Consequently the group delay sensitivities can be eval-

uated after Step 4.

IV. EXAMPLE

Consider the filter shown in Fig. 6 with parameter values

as shown [12]. Table V shows the group delay sensitivities

with respect to characteristic impedances and delay times

obtained by this method and perturbation. The agreement

was to approximately seven significant figures. The param-

eters were perturbed by an absolute value of 0,5 x 10-7
both ways and using quadratic interpolation (central

differences). The appropriate excitations of N, i?, N’, and

~‘ are shown in Table VI. Fig. 7 shows a plot versus

frequency of the group delay and Fig. 8 of the group delay

TABLE VI
EXCITATIONSOFTHE CIRCUIT IN FIG. 6 NEEDEDTO OBI’AIN THERESULTS

OF TABLE V

Source N N N“ N

1

2

3

4

5

6

7

s

9

10

11

v
g

o

0

0

0

0

0

0

0

0

0

0 0 0

10 0 0

sensitivities with respect to characteristic impedances and

delay times.

V. CONCLUSIONS

An efficient approach to the exact calculation of group

delay sensitivities is presented, based on the adjoint network

concept. A microwave filter example was used to demon-
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31

1
0 ,5 10 15

normalized frequency

Fig. 7. Group delay of the filter.

J[ I
.5 6 7 .8 ,9 1.0

normalized frequency

(a)

3

2

,1A ““ n

normalized

(b)

,8 ,9 10

frequency

Fig. 8. (a) Group delay sensitivity with respect to characteristic
impedances. (b) Group delay sensitivity with respect to delay times.

strate explicitly the analyses required. The approach is

practical as well as exact, and should find use in circuit

optimization involving group delay specifications. The

results derived are particularly suited to microwave applica-

tions and include useful tables of sensitivity expressions.

Further details of this work are available [13].
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