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Abstract—This paper presents, explicitly, an approach to the exact
calculation of group delay and its sensitivities with respect to component
parameters based on the adjoint network concept and applicable to linear
time-invariant circuits. In general, no more than four analyses are
required and the computational effort is only moderately more than is
necessary for a single analysis. The results presented are in a form
particularly suited to the computer-aided design of microwave circuits
and include useful tables of sensitivity expressions.

I. INTRODUCTION

HE applicability of the adjoint network concept [1],

[2] to the evaluation of second-order network sen-
sitivities [3], [4] has been known for several years. The
computation of group delay [5], [6] and its sensitivities
with respect to component parameters [5] using these
ideas has also been suggested. The observation by Temes
[5] about the use of perturbation in evaluating group delay
sensitivities and the recent implementation by Bandler
et al. [7] of perturbation techniques might suggest that
exact computation is impractical.

It is the purpose of this paper, therefore, to present
explicitly,. with the aid of a microwave filter example, a
suitable exact approach. In general, no more than four
analyses are required and the computational effort is only
moderately more than is necessary for a single analysis.
The authors are not aware of any similar presentation in the
literature.

II. THEORY

The exact group delay of a linear time-invariant network
N can be evaluated, using the adjoint network concept,
and requires two network analyses, one of N and one of its
adjoint network N.

The group delay can be defined as [5], [6]

T, =
¢ Vo 0w
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where ¥V, is the output voltage. The sensitivity of T with
respect to the variable parameter ¢; will be given by

2

- = L L0 } N3
0, Vo 0900

In (2), 0V,/0¢; and 0V,/dw are known from the analyses of

N and N, where N is excited only by a current source I,

at the output port. Only (62V,/d¢;0w) has to be evaluated.

in - L, Lol
VOZ 5¢, Jw

Second-Order Sensitivities

Assume that the elements of N are described by a hybrid
matrix, namely,

I; ] [YJ- Aj] [Vj] .
a — a , — 1,2,...,,1. 3
[Vbj M; Z;|| 1L, / @)

The elements of N will then be described by [2]

B[54 - @
J

j
Using Tellegen’s theorem we may write [2], [8]
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where the sign convention adopted is illustrated in Fig. 1
and where we assume an unindexed equation of the form
of (3) describes the complete network with subscript a
denoting voltage excited ports and b current excited ports.
Applying the linear operator 0/d¢dy to the voltages and
currents of N, where ¢ and y are variable parameters, and
taking ¥, and I, as discrete and independent, we have as an
extension to (3) [3], [4], [8]

network

I a
Iul Ibl
+ O—=| -
v, \/‘,l element Vl,j
= ol
Fig. 1. Sign convention used.
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Differentiating (3) with respect to i and ¢, we obtain
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Rearranging (6) and substituting (7) in it we get
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Using (4) which defines the adjoint network N, (8) will be
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To evaluate (9) first-order sensitivities of voltages and
currents of element j with respect to ¢ and ¥ have to be
found. Considering the ports of the jth element as the ports
of interest we can find the first-order sensitivities needed.
Examining (9) we find that the hybrid matrix of the element
j is differentiated with respect to ¢ and with respect to .
If the parameter ¢ does not belong to the jth element the
derivative of the hybrid matrix with respect to ¢ will be zero.
The same condition occurs with the parameter y. Assuming
that each element has one parameter, & additional analyses
of N will be needed to find (9), where k is the number of
variable parameters [4], [9].

Group Delay Sensitivities

Considering a single output voltage V, and setting the
adjoint voltage excitation vector ¥, to zero, and replacing
the parameter ¢ by ¢; and ¥ by w, (9) will be (for ¢; in
the jth element)

62 62M T
0*V, 5 I, = (V.7 L] 0¢6w6¢6w [——?aj]
oo ° Mo Al a2z I
3¢,00 0,0
0Y;" oM,
i [ ) A ] b0 oo [—[7,,,.]
Sl og o) o470z | L Ly
0w Ow
oY, oM,”
N [aVajT aijT] o¢; ¢, [—?aj].
dw Ow 04;" 0Z;" T I;
5¢> op;
(10)

The first term in (10) can be found from the currents and
voltages in N and N. Note that w is common, in general, to
all the elements.
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Let us define E; to be

oY, 24,
oo Ow
E A 11
' |, oz, o
ow Ow

Introduce now a new network N, which is the same as N,
but excited at the ports of each element by current and
voltage sources I,;’* and V%, where

__jaj/s A r [_ Vaj:I ,
[ I71;1'“] £E L, |

Consequently, by conventional adjoint network theory

& [é‘VajT az,,jf][-i,,j's] o
=1L 0¢; 99, I71:,'/5 '

where G|’ is the sensitivity component of N with respect to
¢;, known in terms of the voltages and currents in N and
N’. The second term in (10) is now G’.

Next, consider a network N’, which is the same as N,
but excited at the ports of each element by current and
voltage sources I,;"* and V", given by

(12)

(13)

J

IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, APRIL 1976

o) v j’]

= a 17
| = o
ow

so that the third term in (10) can be calculated from the
currents and voltages in N’ and N.

This means that the network response, its sensitivities,
the group delay, and its sensitivities can be evaluated by at
most four network analyses, independently of the number of
variable parameters. This approach is useful for networks
with a large number of parameters.

Table I shows E; for some elements and for two possible
hybrid-matrix formulations. Note that the first-order
sensitivity components with respect to w used in the cal-
culation of the group delay can be found by multiplying E;
by appropriate vectors of the voltages and currents in
N and N. Table II shows second-order sensitivity expressions
needed in evaluating the first term of (10). To avoid num-
erical problems when wt = n/2 Table III and Table IV
have to be used when appropriate.

HI. INTERPRETATION

General Networks

l;./s ICU
Y s| = E; (14) . Ty .
Vi L,; If the nodal admittance matrix is used for the analysis,
so that in N’ each two-terminal element will have a current source
associated with it. This source for N’ is
W=l I 2]
o =141+ “91. 15 ;
[be Vos M; Z;| 1, 4 I;* = % Vi (18)
w
Differentiating (3) with respect to o gives
where Y; is the admittance of the element and V; is the
6_121 0Y; 04; a_VaJ voltage across the element. The source for the second
do | _ |00 dw [Va~J + [Yj A J-] ow adjoint analysis is
¥y oM; 0Z; | L1y M; Z;} | o, N
oo oo Jw oo "= P V- (19)
(16) Fig. 2 shows a two-terminal element and the current sources
Comparing (15) and (16), we see that connected to it for the second analysis.
TABLE 1
ELEMENT DERIVATIVES WITH RESPECT TO FREQUENCY
Element i& 3%
Jw M
inductance - jwéL jL
capacitance jC - ;iit

short-circuited a
lossless transmission line

open-circuited a
lossless transmission line

-j¥T csc wt [

~CSC wT

lossless transmission
line?
cot wT

JYT cschwt

jYt seczwr

~CSC Wt

Jit seczmr
JZt cscsz

CSC Wt
jZt csc wt
cot wt

cot wt

cot wt
CSC WT

* For transmission lines, Z is the characteristic impedance, Y is the characteristic admittance, and r is the delay time.
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TABLE II
SECOND-DERIVATIVE SENSITIVITY EXPRESSIONS
2 2
Element e X % ¢i
Bd)lam B¢18w
1
inductance o) j L
Jw L
. . 1
capacitance j C
. 2.2
jw"C
N
—jY2 T cscwt it sec? ut Z

short-circuited 2 2 2
lossless trans- jt cse” wt -jZ%r sec” wr Y
mission line 2 2

jY cs¢” wt (1-2 wt cot wrt) jZ sec” wt (1+2 wt tan wt) T

—jYZ T sec2 wT jt csc2 wT A
open-circuited 2 2 2
lossless trans- jT sec” wrt -jZ%1 csc” wrt Y
mission line

jY secz wT (1+2 wt tan wt) iz csc2 wt (1-2 wt cot wr) T
2 -csc wt cot wt] [csc wr cot wr ]
JY7 1 csc wr j T cscowt Z
[ cot wT -CSC wrt [ cOt wrt csc wT |
[~esc wt  cot wr] ) csc wT  cot wr
-JT ¢SC wT ' ~jZ Tesc wr Y
lcot wT -CSC wrj [ cot uT <S¢ wt |
lossless _ - — .
transmission -cSc wt  Cot awt csC wT Ccot wT
l1ne? -JY csc wt JZ csc wt
- | cot wT -CSC wTj { cot wT csc wr | <

2 9 2 2
[—ZCSC wt cot wrt cot™ wr + csc2 wr] } [2csc wT cot wt csc” wt + cotTwt }
-WwT ~WT

2 2 2 2 s
cot” wT + csc” wT ~2CSC wT cot wT cse” wt + cot” wt 2csc wT COot wt

# For transmission lines, Z is the characteristic impedance, Y is the characteristic admittance, and z is the delay time.

TABLE III TABLE 1V
ELEMENT DERIVATIVES WITH RESPECT TO FREQUENCY WHEN w7 = 7/2 SECOND-DERIVATIVE SENSITIVITY EXPRESSIONS WHEN wt = 7/2
g 3% 2, 2
Y ) k 9
Element = = é
W A Element %1 o Tl?)a 1;1
short-circuited ; 2
lossless transmission JYT - short-circuited Sy ) z
line lossless transmission it - Y
line 1Y - T
open-circuited iz
%gssless transmission - Jer open-circuited - Jt z
ine
1 ) Bl i) lossless transmission - —JZZT . Y
lossless transmission Yt JZt line - 3z .
line 0 1 0 1 -2 - -
& -3Y“t 0 T 0
2 Z
L 0 -3 L O 1T |
- B Foo2
. . )T 0 -12%t 0
For a three-terminal element two current sources will be  lossless transmssion 2 Y
. line _ 0 jT | 0 =327t
connected to its ports. These sources are of the form . Lo - .o
1 = 1 il
oy, 0y, S [T B P '
P > 1 - 1
Ills = 11 Vl + = 12 V2 (20) L 2 3 L2 i
dw dw
I (- 6Y21 V. + aYZZ V.
2 o oo be expressed by
, . ;) 4
The element and the two sources connected to it are shown I° = o V. (21

in Fig. 3. The sources for the adjoint network are derived
in a similar way.

In general we need the current excitation vector for the s = oY” p (22)
second two analyses, and using (18)-(20) these vectors can dw

and
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Fig. 2. Two-terminal element in the original and adjoint network
and current sources associated with the element.
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Fig. 3. A three-terminal element and the sources connected to it in
the second original network analysis.

where Y is the nodal admittance matrix, ¥ is the node
voltage vector in the first original network analysis, and ¥
is the node voltage vector in the first adjoint network
analysis.

The matrix 0¥ /0w will have the same structure as the
nodal admittance matrix, and we can take advantage of this
fact and build up the Y /0w matrix at the same time and
in a similar way as building the Y matrix. Hence the ex-
citations are found by matrix multiplication. Using this
approach only four analyses are needed to find the group
delay and its sensitivities. Actually, LU factorization [10]
is performed once and the forward and backward sub-
stitutions have to be repeated.

Cascaded Networks

In cascaded network analysis the network is considered
to be a chain of two-port networks. Each two-port represents
an element expressed by its hybrid matrix. Assume that the
cascaded network has one input port and one output port
as shown in Fig. 4. The group delay and its sensitivities can
be found by the following steps.

Step 1: In the first original network analysis we assume
that the current through the load has a certain value 7.
We carry out the analysis step by step starting from the
load end. Suppose that the computed voltage at the gen-
erator end is V. and the actual generator voltage is V.
Since the network is linear, the actual values for all voltages
and currents are found by multiplying the computed values
by the factor V,,/V,,.

At this stage the sources for N’ can be found. The shunt
elements expressed by their admittances will have current
sources connected across them which are evaluated as (18);
on the other hand, the series elements expressed by their
impedances will have voltage sources connected with them
in series as shown in Fig. 5. For a certain element j con-
nected in series the voltage source corresponding to this
element is
=%

ow "’

’5
Vi

(23)

where Z; is the impedance of the element and I; is the
current passing through the element.
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Fig. 4. Cascaded original and adjoint networks.
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Fig. 5. Network representing N’ or N ’, each with its appropriate
sources.

Step 2: In the first adjoint network analysis, the generator
end is short-circuited and a current source I, is connected
to the load end. Assuming a value for the current at the
generator end, the analysis is carried out from the generator
end to the load end. If I, is the computed value for the
current source and I, is its actual value, the actual values
of adjoint voltages and currents are found by multiplying
the computed values by I,,/I,.. The sources for the next
adjoint analysis can be found in similar way as the sources
for the second original network analysis.

After the evaluation of Step 1 and Step 2 the group delay
is computed.

Step 3: To get the group delay sensitivities, first we excite
the original network as previously discussed. The generator
end is short circuited and the sources connected to the
corresponding elements are as shown in Fig. 5. As we can
see there is no source at either end of the network, and in
order to perform the analysis we have to find the Thévenin
voltage at the output end [11]. Applying Tellegen’s theorem
we have i

VL’jo = 2 Iilsvi - Z Vj,sjj (24)
iely Jjelz .
where
V;' Thévenin voltage at the output;
I, adjoint current excitation;
IS current source corresponding to shunt element i;
V;  adjoint voltage across shunt element i;
I, index set for elements connected in shunt in the
network;
Vs voltage source corresponding to series element j;
I j  adjoint current through series element j;
I, index set for elements connected in series in the

network.

Recall that the prime superscript stands for the second
analysis. We have to note that the adjoint network of the
second original network will still be the adjoint of the first
original network and all the ¥; and I j are known.

Since the output voltage is known at this stage we can
carry out the second original network analysis, from the
load end to the generator end, and hence the voltages and
currents of this network are found.
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Fig. 6. Seven-section bandpass filter with sources required for the
analyses. All sections are quarter-wave at 2.175 GHz. Z; = Z, =
0.606595, Z, = Zs = 0.303547, Z5 = Z5 = 0.722287, Z, = 0.235183.
TABLE V
GROUP DELAY AND ITS GRADIENTS
Normalized frequency 0.5 0.6 0.7 0.8 0.9 1.0 ,
Group delay n sec 2.4864 1.18034 0.89524 0.78201 0.71711 0.71409
QTG BTG
Py 1.4736 0.29952 ~0.11745 0.14144 0.13617 -0.09275
“1 7
BTG 3TG
57, = 37 ~5.9195 -1.0742 -0.38574 -0.33653 -0.29703 -0.22951
2 6
STG E)TC
57, = 521 3 9441 0.45418 0.28131 0.14503 0 12701 0.15619
3 5
o
b -12.313 -1.2170 -0.52517 -0.72480 -0.49986 -0.38233
“4
BTG BTG
Frahi v -1.4355 0.22932 1.5822 0 40020 1.5882 1.1276
1 7
DTG BTG
Tt -22.016 -3.2718 -0.35544 -0 11376 -0.55457 0.60610
Tz 816
T, aT,.
5;§7= K?E -34.386 -2.8021 -1.7930 0.16148 1 6499 0.98148
3 5
aTG ~34.418 -2.3702 0.60009 -1.2475 -0.84414 (.78228
x =
Step 4: For the second adjoint network analysis, the TABLE VI
. . . EXCITATIONS OF THE CIRCUIT IN FIG. 6 NEEDED TO OBTAIN THE RESULTS
idea of using Tellegen’s theorem to find the Norton current OF TABLE V
[11] at the generator end is applied. The second adjoint - ' =
network is the one shown in Fig. 5, and applying Tellegen’s Source N N N N
theorem we have, analogously to (24) 1 v, 0 0 0
% > 's 2t's
Vil = X L,V = % Vil (25) 2 0 0 Qar)s Ra1l1
Jjelz iel. 's otg
. 7 s 0 0 Rals Rar)2
Knowing the Norton current at the generator end, the ' rg
. . .. 4 0 0 I
second adjoint analysis is performed from the generator a2 fa2
Te .5
end to the load end, and hence the voltages and currents of 5 0 0 L3 L3
the second adjoint network are known. 6 0 0 1° -
Consequently the group delay sensitivities can be eval- 7 0 0 ' i
vated after Step 4. e Sve
8 0 0 I
at ab
1 . ~r
IV. ExampLE 9 0 0 I RN
Consider the filter shown in Fig. 6 with parameter values 10 0 0 @, @,
as shown [12]. Table V shows the group delay sensitivities 1 o i, 0 o
with respect to characteristic impedances and delay times
obtained by this method and perturbation. The agreement sensitivities with respect to characteristic impedances and

was to approximately seven significant figures. The param-
eters were perturbed by an absolute value of 0.5 x 1077
both ways and using quadratic interpolation (central
differences). The appropriate excitations of N, N, N’, and
N’ are shown in Table VI. Fig. 7 shows a plot versus
frequency of the group delay and Fig. 8 of the group delay

delay times.
V. CONCLUSIONS

An efficient approach to the exact calculation of group
delay sensitivities is presented, based on the adjoint network
concept. A microwave filter example was used to demon-
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Fig. 7. Group delay of the filter.
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(a) Group delay sensitivity with respect to characteristic

impedances. (b) Group delay sensitivity with respect to delay times.

strate explicitly the analyses required. The approach is
practical as well as exact, and should find use in circuit
optimization involving group delay specifications. The
results derived are particularly suited to microwave applica-
tions and include useful tables of sensitivity expressions.
Further details of this work are available [13].
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