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Introduction

A new automatic optimization method called Razor Search is presented.

The method, which is based on pattern search, 111 was specifically developed

for the optimization by computer of networks for which the objective is to

m<n-imize the mamimum deviation of some response from a desired ideal response

specification. Examples falling within the scope of this paper are shown in

Fig. 1,

M{nimax response oh j ectives, which can lead to equal -ripp ~e optima,

will in general give rise to discontinuous partial derivatives of the

objective function with respect to the network parameters. [2, 31 Under these

circumstances otherwise efficient optimization methods -- certainly on-line

manual methods -- may slow down or even fail to reach an optimum, particularly

when the response hypersurface has a narrow curved valley along which the path

of discontinuous derivatives lies. [31 This is probably the reason that

success with the direct minimax formulation does not seem to have been

previously reported. Indeed, to the authors’ knowledge, the optimization of

functions with discontinuous derivatives does not appear to have received

any serious attention in the literature.

Essentially, the Razor Search strategy begins with a modified version

of pattern search until this fails. A random point is selected automatically

in the neighborhood and a second pattern search is initiated until this one

fails. Using the two points where pattern search failed a new pattern in the

direction of the optimum is established and a pattern search strategy resumed

until it too fails. This process is repeated until any of several possible

terminating criteria is satisfied. Thus, the strategy should work on problems

involving narrow “razor sharp” valleys in multidimensional space.

Since the only point of interest in the network response at any given

time during optimization is that point where the maximum deviation occurs

(see Fig. 1) , it is important to obtain this point to any desired accuracy

with as few response evaluations as possible. Another direct search method

called Ripple Search, which locates the extrema of multimodal functions of

one variable in an efficient manner, was developed for this purpose. Unlike

the usual practice of sampling, for example, a network frequency response at

closely spaced fixed frequencies, the Ripple Search strategy first conducts
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a uniform search to determine the extrema and appropriate unimodal regions;

subsequently, during optimization, it locates the extrema w?thin the

previously defined regions using a F.ibonacci search scheme. Safeguards are

built into the program to deal with continuous 1 y changing ripple patterns

during optimization.

Numerical Exavip Ze of the Razov Sea-d .%vategy

Consider the problem of optimizing a 2-section transmission-line trans-

former for a load to source impedance ratio of 10:1 over a 100% bandwidth with

the section lengths f lxed at their optimum values, i.e. quarter-wave at center

frequency. 12,31 It has been shown that ordinary pattern search can fail to

reach the optimum, [31 and that reducing the parameter increments is

ineffective.

For this problem, the objective function U is the maximum magnitude

of the reflection coefficient over the band of interest. The solution

(Chebyshev) is available in tables [41 and is

‘1 = 2.2361
‘2

= 4.4721 U = rein(U) = 0.4286

Contours of U versus Z1 and Z2 I the characteristic impedances Of the two
sections normalized to the source impedance, are plotted in Fig. 2. The sharp

points in the contours indicate the presence of the discontinuous derivatives

which arise when U jumps from one test frequency to another. In the

discussion which follows, it is convenient to define

The starting point $ 1 = (1.25, ’4.50) is selected as the first base

point. The objective funct~on is evaluated at $1 . Let its value be

denoted U1 . The first exploratory move begins-with $1 using a starting

~ncrement 0$ = .25 and taking us to $2 . Since U2 < U1 we retain $2

and continue exploration with @z . The next point 43 is rejected because

U3 > U2 and $2 is incremented in the opposite dire&ion to $4 . U4 < U2

so $4 is retained in place of $2 . The first set of explora~ory moves is

now complete. Since u4 < U1 , $Z iS an improvement O“er $1 .

The point 44 becomes the second base point and in accordance with

the pattern move s~rategy we obtain a projected point @5 such that
@5 -@4=$4-@. U5 iS ~“aluated and a second set ~f exploratory mOVeS

~s in?tiat~d. ?he exploratory increment A@ is set equal to [go - +11/K
where k is the dimensionally of the space; here k=2. Each parameter

was successfully incremented during the previous exploration therefore A@

remains at .25 (otherwise A$ would have been automatically reduced).

Incrementing 411. in the directiOn Previously fOund successful takes us ‘0

$6 . It is found that U6 < U5 so we retain ~6 and increment $2 in the
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d?rectlon previously found successful for this parameter. Point ~7 is,

however, no improvement on ~6 so we try the opposite direction and arrive

at $8 . TMS point is also unsuccessful, leaving us wfth $6 .

U6 < U4 therefore ~6 becones the third base point. We now obtain

a projected point $9 such that ~9 - 46 = ~6 - $4 and an exploratory

increment A$ = ]~6 - 441/~= fiO/8 . Exploration around 99 ends at @2

with U12 < U9 . It is unsuccessful, however, since u12 > U6 .

Not wishing to abandon the pattern already established we project a

point midway between $6 and $9 to $13 , and reduce the exploratory

increment appropriatel~. We fi;ally ar~ive at 415 which is an imprcwement

Over $6 . However, at this stage lhj < E , the minimum allowable increment

for th~s part of Razor Search and set at .08. The first pattern search is,

therefore, t~~inat~d at ~15 .

A second pattern search is started from the random point @6 .

Eventually, we arrive at 436 where this pattern search is aband&ed because

A$ < E , which was reduced to .04. The values U36 and u15 are compared.

U36 < u15 so tfie d~rection of the valley is gi”enby $36 - @15 . Taking

$36 as a base point and +37 as a projected point do~ the valley such that
537 . ~36 = $36 . 415 we ~ontinue with theyattern search strategy until

~+ < E-. No~e that $37 = (2.21791, 4,44943) , i.e. at the 37th function

evaluation the parsme~er values are within 1% and 1/2%, respectively of their

optimum values. \

Conclusions

In practice, Razor Search is a package of 4 subroutines called by a

main program. Ripple Search is a package of 3 subprograms called by the

Razor Search package, and in turn calling on a set of subprograms for

evaluating the network response.

The programs have been extensively checked with multisection resist-

ively terminated commensurate and noncommensurate transmission-line

transformers for which the equal-ripple Chebyshev opt?ma are known. Numerical

results are available. They have further been used to produce new results in

the broadband design of inhomogeneous waveguide transformers, for which no

exact analytic synthesis theory is available. The methods described should

find immediate application to the computer-aided optimization of a wide range

Of micrOwave netwOrks, particularly where Optim~ brOadband perfO~ance is
required, but where synthesis techniques may be inappropriate or unavailable.

AelmowZedgment

This work was carried out with financial assistance from the Faedlty

Of Graduate Studies of the University of Manitoba and from the National

384



Research Council of Canada. The cooperation of the Institute for Computer

Studies of the University of Manitoba is acknowledged.

Re ferenees

[1] R. Hooke and T. A. Jeeves, !! !Dfrect search’ solution of numerical and

statistical problems,
,,J, ACM, “.l, B, pp. 212-229, April 1961.

[2] J. W. Bandler, “Optimum noncommensurate stepped transmission-line
transformers, ,rEL@@On$Cs Lette~s, vol. 4, pp. 212-213, 31st ‘ay 19684

13] J. W. Bandler and P. A. Macdonald, “Cascaded noncommensurate trans-

mission-line networks as optimization problems. ” To be published in

rEEE Transactions on Ctrcuit Theory,

[4] G. L. Matthaei, Leo Young, and E. M. T. Jones, Microwave F~~*-,

Ikpedimce Match<ng Netiovks, ad Coupling Structures. New yOrk:McGraw-
Hill, 1964, chap. 6.

1! WEINSCHEL ENGINEERING CO., INC.

Gaithersburg, Maryland 20760

Precision Microwave Equipment

System Components, Standards, and Test Instruments
for Attenuation, Power, Phase and Impedance.

385



v/////////// //////’

I

‘band of interest—

G(+ ,f)

I I -f
f~ f“

I G(+ ,f)

1 I f
I ff f“

I

lpi

I

fl f“

Fig. 1 Examples having minimax response objectives and falling within the

scope of this paper.
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following one random move the path of discontinuous derivatives lead-

ing to the optimum is effectively located.
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