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Non-linear programming using least pth optimization with
extrapolationt

J. W. BANDLER} and W. Y. CHUS$

We present a general approach for solving minimax and non-linear programming
problems through a sequence of least pth approximations with extrapolation. Several
numerical examples illustrate the effectiveness of the present approach. A comparison
with the well-known SUMT method of Fiacco and McCormick is made under the same
conditions and employing Fletcher’s quasi-Newton programme.

1. Introduction

Itis well known that least pth approximation with a very large value of p can,
in principle, be used to achieve a near minimax solution (Bandler 1969, Bandler
and Charalambous 1972, 1973). For numerical efficiency, the process may be
accomplished by using a sequence of least pth approximations with increasing
values of p. By this approach, a sequence of least pth minima will be obtained.
Under appropriate assumptions we may expect the sequence of least pth minima
to form a unique trajectory of local minima converging to the minimax optimum,
and the extrapolation technique used by Fiacco and McCormick (1968) and
Lootsma (1968) may be applied to accelerate convergence. Several numerical
examples are used to illustrate the effectiveness of the extrapolation technique
applied to least pth approximations. Theoretical validation of the new approach
is also given.

Using the Bandler—Charalambous (1974) minimax formulation we can readily
transform a non-linear programming problem into a minimax problem to be
solved by the present approach.

2. Basic formulae
A brief review of the formulae used in solving the test examples will be
presented.

2.1. Generalized least pth objective
The generalized least pth objective function (Bandler and Charalambous
1972) to be minimized with respect to ¢ is

o($) )/ .
U, p)— M““( (M(¢)> for Micp)#0 (1)
0 for M(p)=0

where ¢,(¢) is a set of m + 1 real error functions, ¢ Ald; ¢, ... b, 1T
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q Apsgn M(p),1<p< oo (2)
M(p) &maxed) (3)
and

I2{1,2,...,m+1} it M($)<0
K=
{J afile(d)>0,iel} if M(d)>0
The gradient vector of the objective function is given by
_ o) P\ [ eld) e
ven-( 3 (5BY) s () gew a0 o

From (1) and (5) we note that if the ¢, (¢) are continuous with continuous first
partial derivatives, then, under the stated conditions, the objective function is
continuous everywhere with continuous first partial derivatives (except possibly
when M (¢)=0 and two or more maxima are equal).

2.2. Minvmax approach to non-linear programming
The non-linear programming problem of minimizing f(¢) subject to

gi(b)=0,i=1,2,...,m (6)

can be transformed into the following unconstrained objective (Bandler and
Charalambous 1974) :

Vig,a)= max [f().f(P)—ogid)] (7)

1<<i<iim

where « is positive, satisfying
l m
=Y <l (8)
& =1 .

where the ;s are the Kuhn-Tucker multipliers at the optimum. The mini-
mization of V(¢, «) with respect to ¢ is & minimax problem and may be solved,
for example, by minimizing the generalized least pth objective with

e(P) Af(d) —ag(d),7=1,2,...,m (9)
en1(P) 2f() (10)

using a very large value of p or a sequence of p values with extrapolation. We
note that a feasible starting point is not required.

2.3. Hatrapolation polynomials (F'iacco and McCormick 1968)

Suppose the generalized least pth objective function U(¢, p) is uniquely
minimized for 1<p,<...<p,<oo at &(1/py), ..., d(1/p,). Let p’ al/p. A
polynomial in p’ that yields ¢(p,"), ..., ¢ (p;) is given by

k=1

)= 3 apY i1k (11)

where the a; are n-component vectors. The determinant of the matrix of
coefficients is the Vandermonde determinant and is non-zero if p;" # p,” for i #7,
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k-1

in which case we have a unique solution for the a;. Then 2 a,(p’) is an

approximation of ¢(p’) on [0,p,'], and $(0)= <¥> (the minimax solution) is
approximated by a,.
Now, the exact Taylor series expansion of ¢(p;’) in p;” about ¢ (0) is

$(p) = f D’j’ e i=1,..k (12)
where
dbw) )"
D) o H2) )] (13)

and € is an error term. It can be shown that the difference between a; and
¢(0) is of the order of (p;)*. Thus, as p," >0, a,—>¢(0). In addition, the
estimates using k£ minima are better than those using k—1 minima. With
Pip =p;[c (¢ > 1), the particular structure of these equations renders the use of
an extrapolation procedure according to the Richardson-Romberg principle
(Joyce 1971) to estimate a,.

If <|>” i=1,...,k j= 1 .,t—1 signifies the jth-order estimate of ¢(0)
after ¢ minima have been obtalned, with p,” being the initial value of p’, then we

have
) Py .
0’:4)(;.{—1), 1=1,...,k
and (14)
iz o -, it i=2,...k
! -1 Tog=1,..,i-1

The  best ’ estimate of ¢(0), namely a, is given by

$(0) =¥ =2, (15)

The extrapolation formula (14) can also be used to estimate the next minimum
of the objective function U(, p), i.e. the (k+ 1)th minimum. Setting i=%k+1
in (14) and solving for ¢;_,*+1, we have

(=1 +; 4"

cl

b = (16)

Noting that a;=d¢,_,*=¢;_,** from (15) and using the values previously
obtained from (14), we can evaluate (16) for j=k—1, k—2,...,1. The last
computation will give the required estimate ¢y*+. This estimate can be used
as the starting-point for the (£ + 1)th minimization of U(¢,p). As more minima
are achieved, the estimate eventually improves. This accelerates the entire
process by substantially reducing the effort required to minimize the successive
U functions.
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3. Theoretical justification
We require an isolated trajectory of least pth minima which is a continuously

differentiable function in p’ for 1>p’ >0 and therefore can be expanded as a

Taylor series about p’=0. To justify this we assume

(A1) The error functions e;(¢) for 4 €l are convex and have continuous (k4 1)th
order, k> 1, partial derivatives with respect to ¢.

(A2) The Hessian matrix of the objective function U is non-singular in the
region {¢$| M (¢p)/M () > 0} for every 1 >p’ > 0.

(A 3) Assumptions (developed later) to ensure differentiability of the trajectory
at p=co.

At the minimizing pointé(p’) we have

wuib - (3 (SEENY) s (A g g0 g
woro=( 3 (iatm) ) 3 (Slaem) v -
17

Since by assumption the Hessian matrix of U is non-singular, the implicit
function theorem assures us that ¢(p’) is a continuously differentiable vector
function of p" for 1>p">0. In other words, we have an isolated trajectory of
unconstrained local minima of U.

It is possible to be explicit about the derivatives of ¢(p’) with respect to p’
for 1>p'>0. For convenience, let

¢y 2e(Pp(p) (18)
M, aM(P(p')) (19)

Since (17) is an identity in 1/¢ (or rather p’), we can differentiate with respect to
p’, obtaining

()’i'p' AT eiﬁ’ 71 T ’
i€ <y e o’

Cip’ a2 Vez )’ T ’
+ ((] — 1 )< ij") < ﬂll )(V()’ip’) l])d)(p )
Mo, »
o Cip -t Cip’ <
—(sgn M ,.)q :’W,, In TAL "h»'} =0 (20)

e, \4 1/q—1 €., a—1 N
VIVU(@@).p)"={ 2| 2 { 7)Y (Vey, )t
,;} M. K M.

¥
eip' a2 Y eip' " ‘}\
_ i Ve, )T 21
¢ ”(Ji,,) (M, Ve )y (21)

Equation (20) can hence be written as

Now

V(YL ((p'), p)T D (p') — (sgn M, )g?

TN
s
TN
N~
R
N——
=
)
L

Cip: q_lln b v, L0 (22)
M, J7 R
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where Dg(p’) was defined in (13). Hence,

- O\ 2\1/e-1
Dé(p') = (sgn Mpf){V(VU@(p’),p))T} q2< > (%) )

e K

* 2 {< p»)H ln(%>v%,} (23)

If we differentiate (22) with respect to p’, we shall find that the existence of the
same inverse is required for D2¢(p’) to exist as required for D¢ (p’). In addition,
D2p(p’) requires the existence of the third partial derivatives of ¢(¢) with
respect to ¢. By continuing in this manner it should be possible to obtain
explicitly all derivatives D*¢(p’) in terms of the derivatives Dig(p’), j=1, ...,
k—1, and partial derivatives of the functions e(¢), ¢=1,...,m+ 1, of degree up
to k+1.

In order that the minimizing trajectory ¢(p’) be expanded in a Taylor series
about p'=0, we have to show that limiting derivatives exist at p'=0. For
very large values of p, we can approximate the matrix as

- ' ip’ T\l in’ -2 le
V(VU((p >,p>)T;q( P (BT)) 3 {(%) ( > )(Vem“f}

=pH

b
where

H, A(sgnM )M, s, z {
iek

, e \"\ "
Sq(P ) é( ‘ZK (J[ ) ) (26)

€ »’ ¢
M,

and

pdp) o A (27)
16
el J[,
Hyis an n x n matrix and for any non-zero n-component vector x :
xTH , x = (sgn Mp) M, s,(p") > {V«,(p ) xTVe, (Ve,,)Tx } (28)
e K

Of interest is the positiveness of the terms xTVe; (Ve )"x in the summation.
It follows that a necessary condition for xTH x 130 be positive is that for the
gradient vectors Ve, ., ¢ €K, at least n of them are linearly independent, where

K afile((0) = M((0))} (29)

This ensures that the vector x cannot be orthogonal to the n gradient vectors
Ve, simultaneously, and at least one of the terms x™Ve;,(Ve;,)T™x will be posi-
tive. If the associated multipliers y;(p’), icK, are positive, it is then sufficient
for xTH ,x to be positive and H, be positive definite and hence invertible.
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Therefore, (23) becomes

ei7, g\1/g—1
Do(p’)=(sgn M, }{p H }™ !12< Z( - ) )
& \ M,

2 {() (v
X n e,
&\, ) Ve

i 3G))" 3 AGE) w5 v
=H, ' Y[ IR n ¢
o\ &\, 2 \ar, ) Ve

< eu) ¢ < (“)L'p' \q
= Illj‘l ( Cip’ >q>1/q Z jy[l’ In ﬂ/[p,) Mp \Y 1
€K 1”]‘/ oK Z ( Cip )q Z (ili’. )q €ip
€K Mp €K _Z‘[pr J
77 —1 ’ Nnr - ﬂ[p' B
= [11) Sq(p ) Z :u'z'(_p ) [l]l l"’z(p )J V eip’ (30)
€K €y’

Imposing optimality conditions (Bandler and Charalambous 1973), we
observe that

lim s (p")=1 (31)

p >0

=0,i¢K

lim () =y | O EE 52
lim ) =2, 1> 0,iek (32)
S p=1 (33)

ek
lim ,()/i", =1,ieK (34)

p’ 0 4 P’

and the gradient vectors Ve,(d(0)), icK, are linearly dependent. Let us define
H,= lim H,. Then, a necessary condition for /, to be positive definite is
Pp—> 0
that the set K contains at least n + I equal maxima and »n of the associated
gradient vectors Ve, ((0)) are linearly independent. A sufficient condition is
that the multipliers v;, ek, are positive.
The limiting value of Dg(p’) at p’ =0 (or p = 00) is therefore given by
D(0)= lim Dep(p)

P =0
=H,"" 3 (v,Inv)Ve((0)) (35)
ek
The existence of the higher-order derivatives of ¢(p’) at p'=0 may be derived
in a similar manner.
To illustrate some of the ideas presented in this section, let us consider the
minimization with respect to ¢ of the maximum of the following three functions :

er(P) =yt +y?
() =(2— )+ (2—¢y)?
es(P)=2exp (—;+¢,)

-
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The minimax solution occurs at the point ¢;=¢,=1. The figure shows the
Euclidean norms of ¢(1/p) and D¢(1/p) as a function of 1/p. The points
correspond to minima for p in the sequence 2!, =1, ...,14. The limiting value
of ||b(1/p)|], is /2 and ||Dé(1/p)|], is well defined.

o HDo(1/p )i, | 1.50
.5 -1.45
al
= =
z =
= .4 He(1/p)il, -1.40 'T:'
3 :
o
3- F1.35
24— T IR E a T 130
- -1
1074 1073 1072 10 1

value of 1/p

Ilp(1/p) 1> and [[Dep(1/p)]l, as a function of 1/p.

4. Numerical results

A minimax example and two well-known test functions were used to illustrate
the performance of the extrapolation formula (14) in estimating the minimax
optimum from a sequence of least pth minima. A CDC 6400 computer was used
throughout and Fletcher’s (1972) recent quasi-Newton programme was used to
perform the minimization. The initial estimate of the Hessian matrix (required
in Fletcher’s programme) was set to the unit matrix for the first optimization.
In subsequent optimizations, the Hessian matrix computed at the previous
minimum was used.

4.1. Minimax example (Charalambous and Bandler 1976)

For the minimax example of the previous section, using the least pth objective
(1) and extrapolation formula (14) for p=4, 16, 64, 256, 1024, 45 function
evaluations yielded ¢, =1-0000001, ¢, =0-9999999. A less accurate solution of
$1=1-0000023, ¢,=0-9999945 was obtained in 62 function evaluations using
p=10%,

4.2. Beale problem (Kowalik and Osborne 1968)
Minimize
J()=9— 8¢ — 6y — debg + 2% + 2> + 3% + 26 1by + 261,
subject to
$;>0,i=1,2,3
8=y — dy— 26,30
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The function has a minimum f(J)): 1/9 at ci:': [4/3 7/9 4/9]T. The Bandler—
Charalambous technique was used to transform the constrained problem into an
unconstrained minimax problem. A sequence of least pth approximations
together with extrapolation was used to obtain the optimal solution. The
same problem was also solved by least pth approximation with a value of p of 105,
The SUMT method of Fiacco and McCormick (1968) was also used to solve the
problem by defining
m

Ul.r)=f(d)—r Z}hlgi(dﬂ (36)
and minimizing U w.r.t. ¢ for a strictly decreasing sequence of » values together
with extrapolation, also using the Fletcher programme under the same con-
ditions. Table 1 gives a comparison between the three approaches.

Least pth approach Fiacco-McCormick method
p=4,16, 64, 256 r=10"2%2x 1073,
=1 p-=10° 4x10-4, 8 x107%, 16 x 103
Parameters Order of extrapolation o1 Order of extrapolation
=3 =3
o 1-3333333 1-3333338 1-3333333
b 0-7777778 07777775 07777778
by 0-4444444 0-4444437 0-4444445
f(P) 0-1111111 0-1111114 01111111
71(Pp) 1-3333333 1-3333338 1-3333333
75(Pp) 07777778 07777775 0-7777778
75(P) 0-4444444 0-4444437 0-4444445
74(P) 507 < 109 1:39 10~ 7-82 1014
Function
evaluations 34 78 40

Table 1. Results for the Beale problem for starting-point ¢°-=[1 2 1]T,

4.3. Rosen—Suzuki problem (Kowalik and Osborne 1968)
Minimize
J()=¢1"+ b7+ 2¢5° + b, — 5y — 5y — 21y + T,
subject to
— P = =t — bt by — by + 820
— P = 20" —hy* — 207 + 1+ by + 1020
=207 —® — by — 21+ o+ by + 520

The function has a minimum f(q;) = —44 at <B =[012 —1]T. The Bandler-
Charalambous technique was used to transform the non-linear programming
problem into an unconstrained minimax problem. The minimax problem was
then solved using a sequence of least pth approximations together with extra-
polation and least pth approximation with a value of p of 105, The problem
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was also solved using the Fiacco-McCormick method with extrapolation with
the same objective function of (36). Table 2 compares the performance of the
three approaches.

4.4. Comments

In the three examples considered, the performance of the extrapolation
procedure in yielding the solution of the minimax or non-linear programming
problem is satisfactory. The order of estimates has been limited to three,
though higher orders are possible. Computer storage requirements and accuracy
considerations such as round-off error (which may become critical for higher-
order estimates) prompted our choice. Numerical experience indicates that the
factor ¢ by which p; is increased is not crucial to convergence. In general, the
taster the rate of increase, the fewer are the number of minima required to obtain
significant estimates of the solution values. Each minimum requires more
computation to be reached than an increase at a slower rate. More minima are
required to compute significant estimates in the latter case. A practical range
for ¢ is 2 to 10.

Least pth approach Fiacco—McCormick method

p=4,12, 36, 108, 324, 972

a=10 p=10° r=1,10-1,10-2,10-3, 104
Parameters  Order of extrapolation a=10 Order of extrapolation
by —0-0000002 —0-0000021 —0-0000000
b 1-0000005 0-9999976 1-0000000
és 1-9999999 1-9999908 2-0000000
b4 —1-0000002 —0-9999883 —1-0000000
f(P) —44-000000 —43-999804 —44-000000
g1(P) —-2:80x10-7 8:56 < 10-° —9:35x 10-10
7:(P) 1-00 1-00 1-00
g5(d) 7-57x10-8 551 x10-° —7-61 x10-11
Function
evaluations 72 107 125

Table 2. Results for the Rosen—Suzuki problem for starting-point ¢°=[0 0 0 0]T.

5. Conclusions

Theoretical considerations and computational implications of applying an
extrapolation technique in solving minimax and non-linear programming
problems using a sequence of least pth approximations have been presented.
Numerical results indicate that this approach is very promising. We note also
* that the least pth approach does not require a feasible starting-point, and that
the efficiency depends mainly on the method used to determine the least pth
minima.
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