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Abstract—A new, integrated approach to microwave design is pre-
sented involving concepts such as optimal design centering, optimal
design tolerancing, optimal design tuning, parasitic effects, uncertain-

ties in models and reference planes, and mismatched terminations. The

approach is of the worst case type, and previously published design

schemes fall out as particular cases of the ideas presented. The math-

ematical and computational complexity as well as the benefits realized
by our approach is illustrated by transformer examples, including a

realktic stripliue circuit.

I. INTRODUCTION

T HE use of nonlinear programming techniques for the

design of microwave circuits has been well established,

Applications hitherto reported by the authors, for example,

fall into two categories. 1) The improvement of a response

in the presence of parasitic [1], [2], in which case the

function to be minimized is of the error function type and

the constraints, if any, are normally imposed on the design

parameters. 2) Design centering and tolerance assignment

to yield a minimum cost circuit that satisfies certain

specifications, usually imposed on the frequency response,

for all possible values of the actual parameters [3]. The

Manuscript received November 14, 1975; revised March 15, 1976.
This work was supported by the National Research Council of Canada
under Grant A7239 and by a Graduate Fellowship of the Rotary
Foundation to one of the authors (H.T.L This paper is based on
material presented at the 1975 IEEE International Microwave Sym-
posium, Palo Alto, CA, May 12-14, 1975.

J. W. Bandler is with the Group on Simulation, Optimization, and
Control and the Department of Electrical Engineering, McMaster
University, Hamilton, Ont., Canada.

P. C. Liu was with the Group on Simulation, Optimization, and
Control and the Department of Electrical Engineering, McMaster
University, Hamilton, Ont., Canada. He is now with Bell-Northern
Research, Verdun, P.Q., Canada,

H. Tromp was with the Group on Simulation? Optimization, and
Control and the Department of Electrical Engineering, McMaster
Unweriity, Hamilton, Ont,, Canada. He is now with the Laboratory
of Eketromagnetism and Acoustics, University of Ghent, Ghent,
Belgium.

function to be minimized is of the cost function type and

the constraints are due to the specifications. Tuning ele-

ments may be introduced to further increase possible

unrealistic tolerances and thus decrease the cost or make a

circuit meet specifications [4],

No consideration, however, of optimal tolerancing or

tuning of microwave circuits has been reported where

parasitic effects were taken into account. A major com-

plication is introduced here, since the models available for

common parasitic elements normally include uncertainties

on the value of the model parameters. These uncertainties

are due to the fact that the model is usually only approximate

and that approximations have to be made in the implementa-

tion of existing model formulas. A typical example of the

latter is the relationship between the characteristic im-

pedance and width of a symmetric stripline, where the

formula involves elliptic integrals.

The model uncertainties can well be of the same order of

magnitude as the tolerances on the physical network

parameters so that a realistic design, including tolerances,

can only be found when” allowance is made for them.
In the approach adopted, an attempt is made to deal with

the model uncertainties in the same way as with the other

tolerances. This involves, however, a complication in the

formulation of the problem. The physical tolerances affect

the physical parameters, whereas the model parameter

uncertainties affect a set of intermediate parameters (which

will be called the model parameter) in the calculation of

the response.

In the present paper we consider design of microwave

circuits with the following concepts treated as an integral

part of the design process: optimal design centering,

optimal design tolerancing, optimal design tuning, parasitic

effects, uncertainties in the circuit modeling, and mis-

matches at the source and the load.
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The Tolerance-Tuning Problem

In this section we introduce some of the notation and

briefly review the parameters involved in the tolerance-

tuning problem.

We consider first a vector of nominal design parameters

#o and a corresponding vector containing the manufacturing
tolerances e. Thus, for k variables,

40!!1‘4!1 ‘1)
A possible outcome of a design is then

@ = (/)0 + Epe

where

and

1

(2)

(3)

(4)

The vector p, determines the actual outcome and can, for

example, be bounded by

It is assumed that the designer has no control over p:.

This leads to the concept of the tolerance region R,, namely,

the set of points # of (2) subject to, for example, (5). An

untuned design implies ~ as given by (2). Consider a vector

t containing tuning variables corresponding to (l). Thus

A design outcome with tuning implies

(6)

and

(8)

(9)

1 t~1
The vector pt determines the setting of the tuning elements

and we consider, for convenience,

–1 <Jtti< 1, i = 1,2, ””.,k. (10)
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Hence, we have a tuning region Rt centered at @o + Ep, for

each outcome p.,

The worst case tolerance-tuning problem is to obtain an

optimal set {#”,&,t } such that all possible outcomes (con-

trolled by p,) can be tuned so as to satisfy the design

specifications (by adjusting pJ if tuning is available. If

tuning is not available all outcomes must satisfy the design

specifications. A detailed discussion has been presented [4].

Model Uncertainties

Taking @ as the vector of physical design parameters

which have to be determined and appear in the cost function,

we may consider an n-dimensional vector p containing the

model parameters, e.g., the parameters appearing in an

electrical equivalent circuit, In general, n # k, We have an

associated vector of nominal model parameters p“ and a

vector of model uncertainties & where

‘“til‘!! ’11)
A possible model can then be described by

where

(12)

(13)

and

rl?, 1

‘Al-““J“ ’14)
Thus PO determines the particular model under considera-

tion, We will assume

–1 <pa, < 1, i= 1,2,. ”.,n (15)

and also the functional dependence on # implied by

P = PO(#) + A(#)Pd. (16)

Given a tolerance region in the # space it would be

hard, in general, to envisage its effect in the p space, even

if S = O. The selection of worst case p is complicated by

the modeling uncertainties. Especially when n < k more

than one {P,,po} may give the same worst casep, In selecting

candidates we will assume, intuitively, that the following

is sufficient:

/%0%, = i 19 i = 1,3. . . ,k, j = 1,2, ” “ “,n, (17)

Mismatch Considerations

We consider environmental influences in the form of

mismatches at the source and load. The situation is depicted

in Fig. 1. The discussion is directed towards handling

terminations with prescribed maximum reflection-coef-

ficient amplitudes and arbitrary reference planes, the
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‘=rl=b’”1
matched terminations

) 1
1

mismatched terminations
)

1s221~poll
I [

—,

‘l~zL Fig. 2. Feasible region of reflection coefficients given that IPJ =
Ij%l = 0.3.

I I

From (18), (20), and (21) we can obtain p in terms of p~
matched source, mismatched load

and pa. Similarly, from (19), (22), and (23) we can obtain

Fig. 1. Two-port circuit viewed with respect to three sets of ter-
minations for defining impedances Z and Z’ and reflection coef-
ficients P, P,, PB, and szz.

p~ in terms of S22 and pB Using Carlin and Giordano [5]

we may readily derive the following expressions. For all

possible phases

Ild – Ml < ,P, ~ IPA + M

l– lPallPSl – 1 + lPallPsl

mismatches at different frequencies being, pessimistically,

taken as independent.

Fig. l(a) shows the ideal situation of matched “resistive

terminations RI and RO. Assume that the actual complex

terminations as seen by the circuit are 2s and Z~, as shown

in Fig. l(b). Then the reflection coefficient

(24)

(25)

of Ipal

where, assuming a Iossless circuit, Ip.1 = ]p~l and

IIPLI – 1s2211< lPbl S IPLI + ls22i

1 – lpJls~~l 1 + bLlb221 “

Z~ – RI

‘s= Zs+R1
(18) A particular example showing the extreme values

and Ipl is shown in Fig. 2.

Explicit upper and lower bounds on Ipl may be derived.

Simplest is the upper bound, given for all possible phases

of ps and pL and constant amplitude by

,

at the source, and

z~ – RO

‘L= ZL+RO
(19)

K, + 1.s221
max lpl =

1 + KPIs221
(26)

at the load. The actual reflection coefficient p at the source

is given by where
z – ZS*p=
Z+zs

(20) K, = bLl + bd

1 + IPLIIPSI ‘
(27)

using the notation of Fig. l(b). The asterisk denotes the

complex conjugate.

Consider the situation depicted in Fig. l(c). We have,

for a matched source and mismatched load, the input

impedance Z with the reflection coefficients

Let

(28)

and

K, = – K,. (29)
Z–RI

Pa=—
Z+R1

(21) Assuming all possible phases of ps and pL, but constant

amplitude as before, we obtain the following lower bounds.
and

Ils221 – KP

1 – KPIs22{’
ifKP < Iszzlz= – Z’*

Pb=zi+z, (22)

[

Kq – IS221 if KP > ls~zl, lpLl > Ipsl,

min lpl = 1 – Kqls22] ‘ K, > IS221
where Z’ is the impedance at the output when the input

is matched. Associated with the latter situation is the

parameter S22 given by [Fig. l(a)] IK, – IS221 if KP > lS~21, IPLI < I/lsl,

1 – KJs221 ‘ K, > IS221
Z’ – R.

‘22= Z’+RO”
(23)

lo, otherwise. (30)
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.05

normalized frbqubnay

Fig. 3. Upper and lower bounds on reflection coefficient calculated
from (26) and (30) and checked by a Monte Carlo analysis (1000
points) for an ideal one-section transformer from 50 to 20 !2 with
IP.I= 0.05 and \pL/ = 0.03.

Fig. 3 shows a comparison of these relations with the

results of a Monte Carlo analysis with 1000 uniformly

distributed values for the phases of p~ and p~ on [0,27c]

for a particular example of an ideal one-section transformer

from 50 to 20 Q with lp~l = 0,05 and IPJ = 0.03.

Assume now all possible amplitudes up to lp~l and lp~l

in addition to all possible phases, The upper bound remains

the same as (26) but the lower bound becomes

[

1s221 – K,
ifKP < Iszzl

min Ip] = 1 - KPIsZ21’

(0, ifKP > ISZJ, (31)

An illustration for Ipsl = lp~l is shown in Fig. 4. We note

that under this restriction, the results are not affected by

whether all possible amplitudes are considered or not.

Design Spec@cations

Let all the performance specifications and constraints

be expressed in the form

gi20 (32)

where gi is, in general, an ith nonlinear function of p(~).
Thus we may consider mismatches by an expression of the

, form

9i = 9i0(P) + PPi(P7Psd%*) (33)

where subscript i may denote a sample point and where

ps represents the source mismatch and p~ the load mis-

match. The function #P, has the effect of shifting the
constraint.

1.0r,e

.8 6
.4

.7
.6

0

I pl
.4 lspJ

1// upper baund

.4/
lp~ = lpLl

olL—.__—
0 .2

“4 Ip$l ‘6
.8

IF’I

.6-

lower baund

.6-

,4-

0$ ,2 ,4 ,6 ,0

Ip,l

Fig. 4. Upper and lower bounds on [PI for lpS/ = [pLl.

Given mismatches, model uncertainties, and so on,

obviously influence the nominal design parameters and ‘

manufacturing tolerances. An objective, for example, is to

find an optimal set {#”,a,t} such that all possible outcomes

(controlled by p,), all possible models (controlled by pa),

and all possible mismatches (controlled by @ are ac-

commodated in satisfying the design specifications.

111. EXAMPLES

To illustrate some of the ideas presented, we consider

two simple circuits. The first includes tuning, the second

considers possible model uncertainties, parasitic effects,

and mismatched terminations.

Two-Section Transformer

An upper specified reflection coefficient of 0.55 for a

two-section lossless transmission-line transformer with

quarter-wave-length sections and an impedance ratio of

10:1 was considered at 11 uniformly spaced frequencies on

100-percent relative bandwidth.

Table I shows some results of minimizing certain ob-

jective (cost) functions of relative tolerances and tuning

ranges. The functions are chosen to penalize small toler-

ances and large tuning ranges. The design parameters are
the normalized characteristic impedances of the two

sections, namely, ZI and 22. The problem has already

been considered from the purely tolerance point of view

[3]. The parameter 8,’ is the effective tolerance [4] of the

ith parameter, i.e.,

&i’ A &i — ti for Et > ti. (34)
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TABLE I
TWO-SECTION10:1 QUARTSR-WAVSTRANSFORMERDF.SIGNCENTERING,TOLERANCING,ANOTUNING

Cost Function* c1 c1 c1
C2

C3 C4 C5

~o 2.1487 2.0340 2.2754 2.5025 1.874S 2.1487 2.1487

z; 4.7307 4.5355 4.9467 5.3337 4.2642 4.7307 4.7307

CIlz: x 100% 12.74 17.83 17.60 25.08 31.62 31.62 12.74

c2/z: x 100% 12.74 17.60 17.83 31.62 25.08 31.62 12.74

tl/z: x 100% 10.00 31.62 18.88 0,00

t2/z; x 100% 10.00 31.62 18.88 0,00

E;/z: x 100% 7.83 0.00 12.74 12.74

E;/z; x 100% 7.83 0.00 12.74 12.74

*c
1

= Z;IE1 + Z;IE2

C2 = Zj.l + z:/.2 + lo(t2/z$

C3 = z;q * z:/E2 + lqz)

C4 = zjcl + Z:/Ez 5+ lo(tllz: + t2/z2

C5 = Z:l.l + z;/c2 + Soo(tllz: + t2/z>

8

1

:LJK-L--
2 3 4 5

Z’f

Fig. 5. Optimal solution corresponding to Column 3 of Table 1,
Rc is the constraint region, i.e., the region for which lo] <0.55.

A number of interesting, but not unexpected, features

may be noted. Column 2 of Table I shows results for no

tuning [3]. Columns 3 and 4 sho”w results when ZI and

Zz are tunable, respectively, by 10 percent. Note that the

nominal points move and the tolerances increase. Fig. 5

illustrates the optimal solution corresponding to Column 3.

The remaining results indicate solutions when the tuning

ranges are variables and included in the objective functions.

Observe that the results in the final two columns are

essentially the same as those in Column 2. The last column

shows how the tuning ranges are automatically set to O

when they are heavily weighted in the cost function, i.e.,

8

1
‘7

6

5

22

4

3

2

I

z,

Fig. 6. Optimal solution corresponding to Column 7 of Table I. l?.,
is the efleciive tolerance region.

they are assumed to be expensive, Fig. 6 corresponds to

the situation of Column 7.

Tuning of any component enhances all the tolerances, as

expected. Furthermore, if tuning is expensive, it is rejected

by the general formulation, which is useful if the designer

has a number of possible alternative tunable components

and is not sure which components should be effectively

tuned (t; > &i) and which should be effectively tolerance.

One-Section Stripline Transformer

A more realistic example of a one-section transformer on

stripline from 50 to 20 Q is now considered. The physical
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Lf4

A’ B’

‘1

z, % 23

9

-d d t -d J d :

t+

A’ ~.~ B’

Fig. 7. Stnpline transfom;r and equivalent circuit.

circuit and its equivalent are depicted in Fig. 7. The specifica-

tions are listed in Table II. Also shown are source and load

mismatches to be accounted for as well as fixed tolerances

on certain fixed nominal parameters and assumed un-

certainties in model parameters.

Thirteen physical parameters implying 213 extreme

points are

IH
WI

w~ variable nominal and

W3 variable tolerances

1

(35)

H!
b,
bz

fixed nominal and

ba
fixed tolerances

t.l

t.2

t,3

where w denotes strip width, 1 the length of the middle

section, 8, the dielectric constant, t.the strip thickness, and

b the substrate thickness. Tolerances on &,, b, and t.were

imposed independently for the three lines allowing in-

dependent outcomes. Nominal values for corresponding

parameters were the same throughout,

Six model parameters implying 26 extreme points are

HD1
D2

Is
D;

p= L; (36)

L2

lt

where D denotes effective linewidth, L the junction parasitic

TABLE II
ONB-SECTIONSTRIPLINSTRANSFORMER

Center Frequency 5 GHz

Frequency Band 4.5 - 5.5 GHz

Reflection Coefficient Specification 0.25 (upper)

Source Impedance 50 Q (nominal)

Load Impedance 20 fl (nominal)

Source Mismatch (Maximum) 0.025 (reflection coeff. )

Load Mismatch (Maximum) 0,025 (reflection coeff. )

‘r
2.S4 + 1%

b 6.35 mm + 1%

ta 0,051 mm+ 5%

Uncertainty on Ll, L2 3%

Dl, D2> D3 1%

it llmn

The formula for DJ used is [6]

(37)

The formula is claimed to be good for wi/bi >0.5. A

l-percent uncertainty was rather arbitrarily chosen for Di.
The characteristic impedance Zi is then found as

z _ 3&t(bi – t~i)i—
DiJ~ “

The values of Li were calculated as [7]

c

where c is the velocity of light in oacuo and

‘i= ln[(~)(s~+(’’a’)]”)l‘~i

Di<l
~i. —

D.E+l

()~_ l+&~2”’l+Si 1 + 3a~— —
‘–l– Mi”l– Si 1 — Cti2

(38)

(39)

Mean values across the junctions- of adjacent sections of

J; and b are taken since actual values in our model can

inductance, and 1, the effective section length. be different across junctions. Data for estimating the
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ideal design plus discontlnuitiea

.5.

~ ,4-
.2
0
~

{ .3.

5
% .2
.
=
2

,1.

03
4 5 6 7

,6-

vertices used

,5.
X Monte Carlo (200,000)

(1

upper

.4-
fxxmds

f

.3
a specification onte

)
nominal

~x

Carlo w.r.t.

(9000) 50A ,200

.2 c
d

lower

.1

/“’”

bound

fraquanoy GHz frequency GHz

Fig. 8. Worst caseanalyses for the stripline transformer. Note that
physical parameter tolerances are not included.

Fi:b 9. Final results for the stripline transfo~er. The letters
. . ..~ indicate different vertices (designs) determining the worst

c&in different frequency bands.

uncertainties on Li are available [6], [7]. Other approx-

imations have, however, been introduced due to the

tolerancing. A 3-percent uncertainty on Li was adopted.

The length 1, is nominally the same as 1. Experimental

results [6] indicate possibly large inaccuracies in d (see
Fig. 7) and that it depends at least on U, so that it is actually

different for the two junctions. A rather pessimistic estimated

error of 1 mm on lt was chosen.

Maximum mismatch reflection coefficients of 0.025 were

chosen for the source and load. Note that these values are

assumed with respect ‘to 50 and 20 Q’ respecti~ely. The

relevant formulas developed in Section II cannot be applied

directly, since ZI and 23, which are affected by tolerances,

must be considered for normalization. We take, most

TABLE III
RSSULTSFORONS-SBCTIONSTRIPLINBTRANSFORMER

Cost Function

Sample Points

Number of Variables

State of Solution

Ntmber of Final Constraints

Number of Optimization

CDC 6400 Time

Minimal Cost
o“

‘1

“i
o

‘3
to

~wl/w; x 100

4.5, 5,5

8

Intermediate

1$

7

2

4.s2

4,660

GHz

mill

m

F

m

mm

%

%

$

%

—

Final

21

9

4

4.93

4,642

8,910

15.442

8,968

15.463
pessimistically,

8.494

0.94

8.437

0.92,p~, = 0.0?5 + khl

1 + o.0251pJ
(40)

e /w~ x 100
‘2

E /w; x 100
‘3

Cl/to x 100

1.20 .1,13

where 0.74 0.70

0.64 0.65

and

IPLI =
0.025 + IPJ

1 + 0.0251p31

procedure for the 13 physical parameters follows Bandler

et al. [3]. From each of the selected vertices the worst

values of the modeling parameters are chosen. Only the

band edges are used during optimization. After each

optimization the selection procedure is repeated, riew

constraints being added, if necessary.
Results on centering and tolerancing using DISOPT

[8] are shown in Table III. The final number of constraints

used is 21 after 9 optimizations required to identify the

final constraints. Less than 4 min on the CDC 6400 was

altogether required. (An intermediate, less accurate,

solution is obtained using 18 constraints after 7 optimiza-

tion requiring 2 min on the CDC 6400.) To verify that

the solution meets the specification, the constraint selection

procedure was repeated at 21 points in the band.

Fig. 9 presents final results for this example. The reason

for the discrepancy between the worst cases when vertices

are used and when the Monte Carlo analysis is used is

(41)

where

obtained fromFig. 8 summarizes some of the results

worst case analyses. Depicted are curves of the ideal design

with discontinuity (parasitic) effects taken into account;

upper and lower bounds on the response with source and

load mismatches also added; finally, up~er and lower

responses with model uncertainties further deteriorating the

situation.

A worst case study was made to select a reasonable

number of constraints from the possible 219 = 213 x 26,

since 219 would have required about 5000 s of CDC 6400
computing time per frequency point. The vertex selection
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that the Monte Carlo analysis does not employ the pes-

simistic approximations of (40) and (41).

IV. CONCLUSIONS

The concepts we have described and the results obtained

are promising. Our approach is the most direct way of

currently obtaining minimum cost designs under practical

situations, at least in the worst case sense. It is felt that this

work is a significant advance in the art of computer-aided

design, since the approach permits the inclusion of all

realistic degrees of freedom of a design and all physical

phenomena that influence the subsequent performance.

The approach automatically creates a tradeoff between

physical tolerances (implying the cost of the network),

model parameter uncertainties (implying our knowledge

of the network), the quality of the terminations, and,

eventually, the cost of tuning. Our approach to mismatches

permits input and output connecting lines of arbitrary

length-an important step towards modular design.

The conventional computer-aided design process, which

seeks a single nominal design or its extension which attempts

to find a design center influenced by sensitivities (see, for

example, Rauscher and Epprecht [9]), would normally

be a preliminary investigation to find a starting point for

the work we have in mind.
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Effect of the Magnetic Perturbation on
Magnetostatic Surface-Wave

Propagation
MAKOTO TSUTSUMI, MEMBER, IEEE, TUSHAR BHATTACHARYYA, AND
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Abstract—This paper discusses the propagation of the magnetostatic
surface wave in two ferrite slabs (namely, YIG and Ga-YIG) with
different magnetic saturations, and cousiders a weak coupling in between

them. The theoretical results are obtained by using the conventional
perturbation technique which is subsequently supported by experiment.
Further, the time delay in group velocity affected by the magnetic

perturbation is treated theoretically.
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L INTRODUCTION

T HE propagation ‘loss associated with a magnetostatic

surface wave on a YIG slab is relatively low [1].

Recently, a millimeter delay-line equalizer has been reported

as one of the applications of these surface waves [2].
Since surface waves tend to concentrate the major part of

their energy near the surface [3], this phenomenon can be
utilized to couple the wave to other, circuits through the

surface to manipulate the propagation characteristic

through this coupling. In particular, one problem that

arises is the control of the propagation characteristic by

changing the distance between the two interacting slabs.

This type of problem has already been considered by


