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Summary: Based upon a uniform distribution inside an orthocell in the
toleranced parameter space, it is shown how production yield and yield
sensitivities can be evaluated for arbitrary statistical distributions.
Formulas for yield and yield sensitivities in the case of a uniform distri-
bution of outcomes between the tolerance extremes are given. A general
formula for the yield, which is applicable to any arbitrary statistical
distribution, is presented.

1. Introduction:

The yield problem has usually been treated through the Monte Carlo method

of analysis. Elias [1] presented an approach which applies the Monte Carlo
analysis directly to the nonlinear constraints. In an effort to reduce
computational time Director and Hachtel [2] suggested applying the Monte
Carlo method in conjunction with a polytope describing the constraint
region. This polytope (a simplex being a special case [3]) might be defined
by quite a large number of hyperplanes. For example, for a space of k X
dimensions, as described by the algorithm, this number may initially be 2".
Scott and Walker [4] suggested an efficient technique using Monte Carlo
analysis with space regionalization. However, the number of required
analyses increases exponentially with the number of variables in order to
get the response at the center of each region. Regionalization was later
used by Leung and Spence [5] exploiting the technique of systematic explora-
tion. This technique is only applicable to linear circuits.

Karafin [6] used a different approach. The yield was estimated according
to truncated Taylor series approximations for the constraints. In the
approach presented here we assume a reasonable nominal point and reasonable
linear approximations to the constraints. These will usually be available
if a centering or a worst-case tolerance assignment problem is solved
first. The assumption of a reasonable nominal point was also required by
Karafin [6]. »

The approach is based upon partitioning the region under consideration into
a collection of orthotopic cells (orthocells). A weight is assigned to

each orthocell and a uniform distribution is assumed inside it. The

weights are obtained from tabulated values for known distributions or
obtained according to sampling the components used. The freedom in choosing
the sizes of the orthocells allows the use of previous information about

the problem. A formula for the yield is derived according to these assump-
tions and it is applicable to any statistical distribution, whether we have
independent parameters or correlated parameters with discrete or continuous
tolerances.

2. Yield with a Uniform Distribution:

Define the tolerance region R, by
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where k is the number of designable parameters, ¢0 is the nominal parameter
vector and € is the vector of absolute tolerance3 of the corresponding
parameters.” Now, define the function V(R) as the hypervolume of the set R.
‘Thus, for the case of independent parameters and assuming a uniform distri-
bution of outcomes between the tolerance extremes, the yield is given by
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is the constraint region defined by m linearized constraints
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Assuming no overlapping of nonfeasible regions defined by different
constraints inside the orthotope Re’ i.e.,

R; 0 Rj'=¢ s (5)
where i#] '
A
R, = {9 | g,(9) < 0} nR_, , (6)
the yield can be expressed as
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Define the set of all vertices of the orthotope Re by [7]
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where E is a k x k diagonal matrix with €55 i=1, 2, ..., k along the
diagonil and using the following vertex ehumeration scheme:
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Corresponding to each constraint g2(¢) > 0, let us define a reference
vertex . : ~
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If gl(¢r) > 0, then V(RZ) = 0. Otherwise we find the distance between the
intersection of the hyperplane g£(¢) = 0 and the reference vertex ¢r along
an edge of Re in the ith direction given by
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The general formula for Vz = V(Rz) is

. k S
v"={-};.~l | a’-‘} {Z -1)" csi)k} , , (13)
‘-' j=1 J seSz




where

s X 55 ].s T| '
69':1_.2 7“j’“j| ) (14)
j=1 a.
J
A .
8= {s | £,6%) <0, %= o0+ E us} , (15)
s X s T , ‘
V= -Z P / 2 . _ (16)
‘ i=1
Hence,
m 2
X=- 1% ey, « (17)
39, 2=1 3¢, ' :

m m L k :
Y Ly Vv k
—= v'o- ) — 25 T T e . (18)
% [Ei p=1 p=1 asi]///[ j=1 J}

2 T
L q. k vk
vV _ 1 _E.I ] %
i N e CA R
j#p
T
s k u. e, i
81 S NS DI ¢35 Rl I A Ky S | (19)
seS . j=1 qz (al)z J J
L il
2 L S
oV T 3V k s T v s k-1
Tl i b L B G S A €9 Rt (20)
i 9. o. seS
1 1 2 J
where :
S .
; k

A= T DY et (21)

seSz -

k .
1 2

B = F I l Of.j . . (22)

. j=1

It is to be noted that the yield sensitivities are discontinuous whenever a

vertex ¢S satisfies the equation g2(¢$) =0 for any £ = 1, 2, ..., m,

3. - Yield with Statistical Distributions:

The probability distribution function (PDF) might extend as far as (-, «),
however, for all practical cases we consider a tolerance region Re such that

J F($) doy doy ... dpp =1, (23)

R
€

where F(¢) is the PDF.

The orthotope R€ is now partitioned into a set of orthocells R(il, iz,'..., ik),

where ij =1, 2, ..., nj, nj is the number of intervals in the jth direction




and j =1, 2, ..., k. A weighting factor W(il, i
each orthocell and is given by

W(il, iz, eens ik) = w(il, iz, cees ik) / V(R(il, 12’ cens ik)), (24)
where

PYRRTR ik) is assigned to

Wlip, Ay, weey i) = J F(9) dv (25)
R(il,iz,...,ik)
VR@E,, iy, .oy 1k)) = J dv = ;=1 ej,iJ > }(26)
R(11,12,...,1k)
dv = d¢; do, ... doy (27)
and e, . , €, . , ..., & . are the dimensions of the orthocell. .
1,11 2,12 'k’lk :

By exploiting the way (13) is constructed, a formula for the weighted
nonfeasible hypervolume with respect to the %th constraint is constructed
and is given by ‘
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where, for indexing with respect to ¢r, i.e., numbering starts at this vertex,

a§'= the distance from the reference vertex to the point of intersection in

the jth direction,

Foy
§(i,, i,, ve., i,) = max |0, |1 - — ) €. , (29) -
12 72 | k | 551 aj p=1 j,p-1
ej,O =0 ,3j=1,2, ..., k , (30)
k
MW ,ah,eee,d)) = Wi Li,,000,0) - jzl w(11’12”‘"lj-l’lj-1’1j+1""’lk)
% .
+ W(i,, i,,.0.,1.-1,...,1i -1,...,1i,) - ...
. 1’ 2’ 3 E 3 b ’k
j.p=1 J P
jfp
s DX WE-1,i-1,...,1,-1) (31)
1 2 k
and _
W(11,12,...,1k) = Q if 1j =0 .or 1j = nj+1 for any j. (32)
For the case of independent parameters we use
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fj(¢j) is the PDF of the jth parameter and Rj(ij) is the ith interval for that

parameter.




Again, assuming nonoverlapping, nonfea31b1e regions defined by different
constraints inside the orthotope Re the yield can be expressed as
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4. Examgles:

The Karafin bandpass filter [6, 8], was used for verification of the yield
formula using the first set of nominal values obtained by Bandler and Liu [8].
All inductors have the same Q at the nominal value given in [8] as the
corresponding inductors in [6]. The results given in [8] as indicated by

the authors violates the specifications at unconsidered frequency points.

The adjoint network technique was used for evaluating the sensitivities

and, hence, linearizing the constraints at these frequency points. The
linearization was done at the worst violating vertex, i.e., the vertex

which gives the most negative value for that particular constraint.

Taking a 10% tolerance on all 8 parameters, assuming uniform distributions,
considering the sample points {190, 240, 360, 480, 490, 700, 860} Hz, the
present approach indicates a yield of 92.6% in 1.7s computer time as compared
with 93.0% in 51s computer time using 2000 Monte Carlo points with the
nonlinear constraints.

In addition, the same uniform distribution of outcomes was considered but
with the (more accurate) 5% tolerance components removed. For the afore-
mentioned sample points, the present approach indicates 68.9% in 4.9s and
the Monte Carlo method 71.0% in 45.6s.

Next, we consider the case of normal distributions with uncorrelated parameters
[9]. An interval of 4 times the standard deviation was divided into 3 sub-
intervals, the weights being in the ratio 0.2298 : 0.4950 : 0.2298.[10].

For a standard deviation on all 8 parameters of 6% the present approach
indicates a yield of 88.4 % in 7.4s compared with 87.0% in 68s by the Monte
Carlo method.

5. Conclusions:

It has been shown how yield may be estimated for arbitrary statistical
distributions in an efficient way without recourse to the Monte Carlo method.
Examples involving a number of distributions have been presented and the
results contrasted with those given by the Monte Carlo method. It is felt
that this work should be useful in optimization [11]. A full version

of this paper with more theory, examples and illustrations is available [12].
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