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TABLE I 

COMPARISON OF VARIOUS GRAPHICAL I/O SYSTEMS FOR CIRCUIT ANALYSIS 

AEDNET CIRCAL GINA OLCA 2250 ECAP 

Graphics Language 
Computer 
Input Medium 
Alphanumeric Keyboard 
Analysis Program 

AED 
Project MAC 

Keyboard 
yes 

AEDNET 

ProjezDMAC 
Keyboard 

Yes 
CIRCAL 

CALLIGRAPH 
7094 

Light pen 
no 

CALAHAN 
POTTLE 

> 
projected 

CIRCUS 

GRIN 
PDP5 

Light pen 
yes 

HYBRID 

GPACK 
360 Mod 40 

Keyboard 
yes 

ECAP 

Finally, it should be said that only OLCA and QINA have hard copy 
provisions, and only GINA has a built-in movie-making function. 
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Cascaded Noncommensurate Transmission-Line 
Networks as Optimization Problems 

Interest is growing both in computer-aided design and optimiza- 
tion of electrical networks generally, and in the synthesis of non- 
commensurate transmission-line networks in particular. Multivari- 
able networks of the latter kind are, to date, still optimized in the 
real frequency domain [l]-[3]. To obtain equal-ripple responses 
directly involves the minimization of functions of several variables, 
the functions being characterized by discontinuous partial deriva- 
tives. Our experience indicates that virtually all available automatic 
optimization methods can be expected to fail, in general, to reach 
even a local optimum for such situations. 

This correspondence presents and discusses the relevant results 
of a study of the optimization of cascaded noncommensurate trans- 
mission lines acting as transformers between resistive terminations. 
The discussion is illustrated by contour plots of those parts of the 
response hypersurface generated by varying two parameters of a 
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typical network, the remaining parameters being fixed. The behavior 
of some direct search strategies [l]-[8] on these contours, particularly 
pattern search [a], [4]-[6], is discussed. 

An earlier publication [2] found that the optima for the problem 
of minimizing the maximum input reflection coefficeint over specified 
bandwidths for networks of the type shown Fig. 1 (a) turn out to be 
the known quarter-wave Chebyshev designs [9]. A formal proof of 
this does not yet appear to have been reported, however. ’ 

The present correspondence will restrict itself to the two-section 
transformer (four variables) shown in Fig. l(b). As shown, it has 
a load-to-source impedance ratio R of 1O:l and requires optimum 
performance over a 100 percent bandwidth. Formally, the problem 
is to minimize 

U = max IAh fill i= 1,2,-e* ,n (1) 
i 
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Fig. 1. Exitmples of multivariable cascaded transmission-line networks. (6 ) 
m-section resistively terminated noncommensurate transformer. (b) Two-section 
1O:l transformer for optimum performance over 100 percent bandwidth. 
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Fig. 2. (a) Contours of U when 21 = Zz = Zr. (b) Contours of Uwhen Z1 = 2.2361 and ZI = 4.4721. (c) Contours of U when Ez = I, and Zs = 4.4721. 

subject to The solution is [9] 

L 2 0 

0 I 

(3) Umin = 0.4286 

k= 1,2 I, = 1, = I, 

2, > (4) 2, = 2.2361 Z, = 4.4721 
where fi = 0.5 andf, = 1.5 (normalized to the center frequency fO). where 1, = c/4 fo. 
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Any two parameters can be fixed and the others varied to produce 
contours of U. Perhaps the most interesting for ,our purpose are 
the three cases shown in Fig. 2. In Fig. 2(a), the lengths are fixed at 
their optimum values and the impedances are varied; in Fig. 2(b), 
the impedances are kept fixed at their optimum values and the 
lengths are varied; and in Fig. 2(c), the parameters of the second 
section are held at their optimum values while those of the first 
section are varied. The sharp points in the contours indicate the 
presence of the discontinuous partial derivatives of ‘CJ. The dii- 
continuities occur, of course, when U jumps from one test frequency 
to another. 

The pattern search strategy’ was started in each corner of the 
three diagrams in Fig. 2. Two runs per corner were made, one with 
parameter increments (for the exploratory moves) of one division 
on the 2 scales and/or 2/3 of a division on the Z/Z, scales, the other 
with double these increments. The increments were then reduced as 
necessary to keep the pattern search going in an effort to reach the 
optimum, either until the increments were less than lo+ or the 
number of evaluations of U exceeded 1000. 

The only situation that presented difhculties was that of Fig. Z(a). 
For point (1, 3), the optimization process terminated outside the 
bounded area. Convergence from the other corners onto points very 
close to the known optimum resulted when parameter increments of 
one division (AZ = 0.25) were used. The corresponding paths are 
labeled B.’ For AZ = 0.5 (paths labeled A), the search failed to reach 
the optimum. 

Similar difficulties also manifested themselves in the more general 
four-variable optimization described by (l)-(4) and in other multi- 
variable examples investigated [Z]. 

A brief explanation of the failure is in order. Fig. 3 reproduces 
the contours of Fig. Z(a). It shows how pattern search’ using AZ = 
0.25 and starting at a fails at f after 16 function evaluations. There- 
after, the parameter increments would be reduced and the process 
restarted at f. But it is clear that, unless a fortuitous choice of in- 
crements is struck, pattern search will repeatedly fail no matter 
how small the increments are made, and .eventually terminate very 
close to f. 

In those cases when the optimum was reached, between 72 and 
280 function evaluations were required taking from l/4 to 1 second 
on the IBM 360/65. No attempt to minimize the number of func- 
tion evaluations was made. 

Although all the contours in Fig. 2 have discontinuous derivatives, 
only in Fig. 2(a) do the contours lie entirely in one quadrant. Once 
the search stops at a point of discontinuous derivatives, exploration 
parallel to the coordinate axes will not yield any improvement. 
Wilde [lo] and Wilde and Beightler [II] have discussed similar 
situations when methods that are usually good at following narrow 
valleys can fail. Powell’s minimization method [7], [S], which does 
not restrict itself to exploring along the coordinate axes, was also 
programmed, but failed in the same way as pattern search. 
O’Hagan’s method [l], which relies on orthogonal exploratory moves 
in directions oblique to the coordinate axes chosen at random, 
might eventually find the direction of the valley because of its 
reliance on randomness. 

Little research appears to have been done t,o overcome this prob- 
lem as contours involving discontinuous derivatives seem to be 
unpopular among exponents of optimization. It is usual to reformu- 
late the problem by specifying an objective function that provides a 
nearly equal-ripple response (see, for example, Temes and Calahan 
WI). 

It is felt, however, that optimization in the frequency domain is 
of sufficient importance to warrant a deeper investigation of methods 
for handling equal-ripple response criteria directly. Even if the 
synthesis problem for multivariable transmission-line networks is 
solved, the relatively narrow range of practical characteristic imped- 
ance values (say 15 to 150 ohms), might still make optimization 

1 More recent modifications 151, 161 of the pattern sesrch strategy of Hooke and 
Jeeves [4] were incorporated into the computer program. 

* The dashed lines labeled A and B in Fig. 2(a) are not, of courq the actual 
paths taken. 
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Fig. 3. The behavior of pattern search for the case II = 22 = 1, starting from a 
typical point when AZ = 0.25. 

in the frequency domain more attractive. The example presented 
here might be found useful for testing newoptimizationmethods [13].8 
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Transient Responses of Conventional 
Distributed Amplifiers 

In a recent correspondence [l], the transient responses of a distrib- 
uted amplifier using bridged-T filter sections have been presented. 
In [2], we have discussed the effects on the gain and transient re- 
sponses of a distributed amplifier by inserting an extra section into 
the platelme of the amplifier. In this correspondence, we shall sup- 
plement the previous two works by presenting the transient responses 
of a conventional distributed amplifier. The theoretical results will 
confirm Sarma’s experimental claim [3] that the staggering of the 
lines of the amplifier will improve the transient responses. 

To obtain the transient response, it is necessary to start with 
the voltage gain function of the amplifier. The voltage gain function 
A(s) is derived in [4], and is given by 

A(s) = - AC3 sinb $n(e, - 8,) 
n(1 + 2y’ sinh $(O, - 0,) . exp ( -W, + 4) I, 

(1) 
where AO = -+ng,,,Rop, the zero-frequency voltage gain; g,,, is the 
transconductance of the valves employed; n is the number of valves 
used in an amplifier stage; R* is the nominal image impedance of 
the plateline; wop and WQ are the plateline and gridline cutoff fre- 
quencies, respectively; Zi = S/C+ and XL = s/woo; and 0, = 2 sinh-1 
x’ and trO = 2 sinh-1 x’ z, 

In order to obtain :he Laplace inverse transform of (l), it is 
simpler to express the hyperbolic functions in terms of the exponen- 
tial functions. Since 

~inh +(e, - e,) 
sinh +(e, - e,) -exp i-304 + 4>1 

= 2 exp {-(k - 4>e, - (n - k + 4)4k 

and exp $9, = xi + (1 + $‘)I’, and exp @, = ZZ~ + (1 + xi2)1’*, the 
voltage gain function A(s) becomes 

A(s) = (A&) 2 (1 + z;2)-“2(2: + (1 + 2y2)1-2k 
k-l 

. {-J$ + (1 + 2;y2]2(k--n)--1. (59 
In order to observe the effects of the staggering of the lines on the 
transient responses of the amplifier, it is necessary that (2) be nor- 
malized with-respect to the same quantity. Thus, let P = WQ,/WO,. 
The term P is called the staggering factor of the amplifier. Since 
the plateline usually has a higher cutoff frequency than that of 
the gridlme, the value of P is ranged from 0 to 1. Using the following 

START Q 

-0 
50 

Fig. 1. Flow chart used to generate the values of the Bessel functions. 

Laplace inverse transform indentities, 

(1 + s2)-1’2(S + (1 + S2)1’2]-k = J,&) 

(s + (a2 + sa)l’a]-k = (k/ak)J,(at)/t, 

where Jk(t) is the standard symbol for a Bessel function, in conjunc- 
tion with the fact that P = xi/xi, the output voltage en*, (w&) of 
the amplifier due to the unit-impulse-voltage input can be obtained 
from (2) by means of convolution integral, and is given by 

To find the unit-step-voltage response of the amplifier, a simple 
integration is performed wherein 

w”“t 1” 
-1 s J,,-,b - 4 J,,n-w +,(z/P>z-’ dz dw, 0 0 (5) Manuscr& received September 16, 1968; revised January 10, 1969. 


