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ABSTRACT: A new approach for time-domain analysis and design of lumped networks is 
considered. The lumped elements are modeled by transmission-line sections or stubs and 
the modeled network is analysed by the transmission-line matrix (TLM) method, which 
provides an exact solution to the model. Compensafion of errors arising in modeling the 
network elements is discussed. Sensitivities w.r.t. design variables can easily be obtained 
and thus used in optimization. Sensitivities w.r.t. time and the time step are also obtained 
and used to improve the model’s response. 

I. Introduction 

The transmission-line matrix (TLM) method of numerical analysis provides a 
new approach to the time domain analysis of lumped networks. The method 
has previously been extensively used for solving electromagnetic vector field 
problems in two and three dimensions (1). The technique has also been used 
for solving the diffusion equation (2). 

In its application to lumped networks (3), the TLM method has some 
advantages because it provides an exact solution to the transmission-line 
networks used to model the actual networks. The paper demonstrates how the 
transmission-line models for lumped networks can be derived, and how to 
compensate for modeling errors in terms of additional network elements. 

* This work was supported by the National Research Council of Canada under Grant 

A7239. This paper was presented at the Conference on Computer-aided Design of 
Electronic and Microwave Circuits and Systems. Hull, England, July 1977. 
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The TLM method is easily programmed. Calculation of exact sensitivities for 
the model w.r.t. design variables is possible. A symmetrical LC lowpass filter 
has been optimized in the time domain using TLM analysis, the required 
gradients being obtained from the sensitivities derived in the paper. 

Sensitivities with respect to the time step are also derived, from which an 
approximation to the time sensitivities is obtained. Using these formulas and 
the TLM results, we can extrapolate to the near exact impulse response. 

lL Transmission-Line Modeling 

The time domain response of a lumped network can be found using the TLM 
method, after choosing an appropriate transmission-line model for the net- 
work. Inductors and capacitors are represented either by transmission lines or 

by stubs. 

Link Modeling 

First consider the modeling of a series inductor and a shunt capacitor, each 
by a transmission line. To simplify the analysis, certain assumptions must be 
made. We will let all the transmission line models have the same length, and let 

the time taken by a pulse to travel along each transmission line be the same, 
namely, T. The lumped inductor L shown in Fig. l(a) can have the 
transmission-line model shown in Fig. l(b) with an inductance per unit length 

L,, where 

L,l = L. (1) 

The velocity of propagation on the transmission-line may be expressed as 

(a) ‘(b) 

(cl (d) 

FIG. 1. Lossless transmission-line models of a series inductor and a shunt capacitor. 
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and hence the distributed capacitance C, is given by 

The basic parameter which determines how pulses are scattered throughout a 
transmission-line network is the characteristic impedance Z,, which for the 
model of inductor, is obtained from (1) and (3). Thus, 

The error associated with the model of the inductor is due to the distributed 
capacitance given in (3). This may be approximated in the lumped circuit by a 
lumped shunt capacitor C, representing the error, which is given by 

(5) 

This lumped capacitor is shown dotted in Fig. l(b). 
The characteristic impedance for a transmission line modeling a lumped 

capacitor (Fig. l(c)) may be derived in the same way, the result being 

and the error this time will be represented by a series lumped inductor L, (Fig. 

l(d)) of value 

It is clear that if T is small then for the model of the inductor Z, and Ld are 
large while the unwanted shunt distributed capacitance Cd is small. On the 
other hand, for the model of the capacitor Z, and the unwanted Ld will be 
small if T is small. So, as T becomes smaller, the transmission-line model 
represents more closely the lumped element. 

Consider the lumped network shown in Fig. 2(a). It is composed of M simple 
resistive networks with scattering matrices Si, S2, . . . , S,, connected either by 
a simple pair of wires or a pair of wires containing a series inductor or a shunt 
capacitor or both. In the transmission-line model these connections are re- 
placed by transmission-line sections of propagation time T as shown in Fig. 
2(b). In this case the model is called a link transmission-line model (3). 

The numerical method operates by considering a pulse to be injected into 
the input terminals of the whole network. The pulse scatters on reaching the 
first sub-network being partly reflected and partly transmitted. This scattering 
occurs at every sub-network, pulses racing to and fro between sub-networks. 
The output impulse function is the stream of pulses at the output terminals. 
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(a) 

(W 

I I I ‘, 
, 1 

FIG. 2. Lumped network and link transmission-line model. 

If the mth network has N ports with incident and reflected voltages given by 

(3) 

(8) 

then the scattering equation is 

kV;= s, kv;, (9) 

where the subscript k denotes the kth time step. If all the incident and 
reflected pulses are assembled into the partitioned vectors 

V: v; 
v: Vi 

Vi= : ’ v’= : II I* . 
V:, vi, 

(10) 
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then the scattering equation for the entire network is 

kVr = s kVi, (11) 

where S in this case is a block diagonal partitioned matrix with Si, S2, . . . , !&,, 
on the diagonal. 

The reflected pulses are the incident pulses at the next time step, and they 
are related by 

k+Ji = c kV’, (12) 

where C is the connection matrix indicating the transmission of reflected pulses 
from one sub-network to become incident pulses on a neighbouring sub- 
network. The iteration equation is 

k+Ivi = cs kv’. (13) 

The method will be unconditionally stable for a passive RLC lumped network 
and, therefore, it will be useful for stiff networks (3). 

Stub Modeling 

A lumped network consisting of resistive, inductive and capacitive elements 
may also be modeled by stub transmission lines. In this case, the time taken by 
a pulse to travel to the end of the stub and back again is T. Following the same 
procedure used in the link transmission-line models, an inductor is modeled by 
a short-circuit stub with characteristic impedance 

(14) 

and the modeling error is a capacitor given by 

C=$. 

A capacitor is modeled by an open-circuit stub with an impedance 

zJ=& 

(1% 

(16) 

and the modeling error is an inductor given by 

(17) 

The elements with these models are shown in Fig. 3. 
Consider the lumped netivork in Fig. 4(a), which is represented by a resistive 

network with N pairs of terminals to which all of the inductors and capacitors 
are connected as shown. A transmission-line model of the circuit is shown in 
Fig. 4(b) in which all of the inductors are replaced by open-circuit stubs. The 
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- T/2 - 

4,” 
a 0 

FIG. 3. Stub models of an inductor and a capacitor. 

reflected pulses 

v’= 

V; 

V; 

4 _VFv 

w 

will be scattered instantaneously into the N stubs. These pulses will travel to 
the ends of the stubs and be reflected or reflected and inverted for capacitive or 
inductive stubs, respectively. The pulses then return to the resistive network 
and become incident pulses 

(19) 

FIG. 4. Lumped network and transmission-line stub model. 
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If the scattering matrix of the resistive network is the NX iV matrix S then, 
at the kth iteration, 

kVr = s kVi. (20) 

Reflection of the pulses at the end of the stubs gives the incident pulses at 
time k + 1, obtained using the same formula as (12), where C, in this case, is an 
NX N diagonal matrix with an entry of 2 for a capacitive stub and -1 for an 
inductive stub. The iteration routine is therefore exactly as (13). 

To enable the incident pulses Vi to converge simultaneously it is sufficient 
that the propagation time T be the same for all the stubs. This propagation 
time is therefore the same as the iteration time. This method is also uncondi- 
tionally stable for a lumped network of positive resistors, inductors and 
capacitors. 

Discussion 

It should be noted that the stub modeling leads to an implicit routine. The 
reason is that the scattering matrix S involves the entire resistive network. 
Thus, to calculate S it is necessary to invert a set of simultaneous equations 
describing the network. If the network is nonlinear, then this inversion is 
required before every iteration. In link transmission-line modeling, however, 
the iteration routine is explicit, the complexity of equations being independent 
of the number of sub-networks or nodes. The scattering matrices of the 
networks are small enough to be calculated by simple formulas, for example, 
the scattering matrix of the sub-network in Fig. 5(a) is given by 

1 

R+Z,+Z, 

221 
X R(R+Z,+Z,)+2Z,(Z,-Z,) (21) 

R+2Z, 1 

and the scattering matrix of the sub-network in Fig. 5(b) is 

1 

z1z*+z,z3+z*z3 

z*z, - z,z, - 2321 2ZlZ3 2ZlZ2 
X 

[ 

=x3 z,z, - z,z* - z*z, 2Zl& (22) 
2z,z, 2ZlZ3 I z, z, - z, 23 - z,z* 

In general, a network may be modeled by either one or both types of model. 
The LC lowpass filter in Fig. 6(a) can have the link model of Fig. 6(b) or the 
stub model of Fig. 6(c) or the mixed model of Fig. 6(d). 

Example 

The following example illustrates the TLM routine for link modeling. Con- 
sider the circuit of Fig. 6(a) (4) and its link transmission-line model in Fig. 6(b). 
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(W 

(4 

(4 

=, /’ =3 

(b) 

FIG. 5. Example of two simple sub-networks. 

r-1 r-7 r-,1 rl 
l”l1.‘lV’ eviL.LeI 3v” 

,I I2 I I 
, v2 , y- f’v; ‘v; + f’v; 

Zl 

- 

Z4 

z, 

P 
z2 z4 

Cd) Zl Z3 Z3 

FIG. 6. LC lowpass filter and different types of models. (a) the filter, (b) link model, 
(c) stub model, (d) mixed model. 
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TABLE I 

Incident and Reflected Pulses of the Circuit in Fig. 6(b) 

t 
(set) ‘VI ’ vz ‘Vi ‘v; “V; ‘V? 2V 2 

0.0 0.5 - 0.90909 - - - - 
O.l-- - - 0.90909 -0.90004 - 0.00904 
0.2 - -0.90004 0.73639 - - - - 
0.3 - - - 0.73639 -0.71125 0.00895 0.01619 
0.4 - -0.71125 0.58193 - - - - 
0.5 - - - 0.58193 -0.54452 0.01589 0.02151 

t 
(set) “V, ‘V; ‘Vi ‘Vi “Vi “V; ‘Vi 

f-J.0 - - - - - - - 

O*l- - - - - - - 

0.2 0.00904 0.00895 - 0.01800 - - - 
0.3 - - - - 0.01800 -0.01472 0.00327 
0.4 0.01619 0.01589 -0.01472 0.04680 - - - 
0.5 - - - - 0.04680 -0.03829 0.00851 

Let the time step T be 0.1 second and the component values L, = L4 = 1, 
C, = 2 and R, = R, = 1. The characteristic impedances Z,, Z3 and Z, are 10, 
0.05 and 10, respectively. An incident pulse of value 0.5 is launched into the 
transmission line representing the source resistance and hits the first junction 
at time t = 0’. The pulse scatters producing reflected and transmitted pulses. 
The transmitted pulses travel towards the output, being scattered at the other 
junctions. The pulses propagate forwards and backwards between the junc- 
tions., Table I gives the incident and reflected pulses at the junctions of Fig. 
6(b) at different times. 

RI. Compensation of Errors 

Errors in the TLM method arise only from how well the transmission-line 
model represents the actual circuit. Errors do not arise from the numerical 
solution of the model. In certain cases the unwanted distributed elements are 
reduced when the step size T is reduced. A distributed capacitor in modeling 
an inductor is an example of such a case. We have to note that this capacitor is 
known before any calculation is started, since T has to be chosen. If the 
distributed error capacitor is taken to be lumped and half placed at each end of 
the transmission-line, each of these lumped capacitors has a value of C,1/2. The 
inductor and the two capacitors representing modeling errors are shown in Fig. 
7. To compensate for modeling error (to some degree) we can subtract the 
error capacitor from the original neighbouring network components. As T 
increases the amount to be subtracted increases and it becomes obvious that 
there may be a limit to such compensation. 
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FIG. 7. An inductor with two capacitors representing modeling error. 

FIG. 8. Chebyshev filter with 7 elements. 

The impulse response of the Chebyshev filter shown in Fig. 8 (5) was found 
by Kutta-Simpson, Euler, TLM and TLM with compensation. The results are 
shown in Table II. The advantage of compensation is clear from the table 
comparing the percentage error between the Kutta-Simpson integration 
method and the other methods. The actual components and the new compo- 
nents after compensation are given in Table III. 

TABLEII 

Comparison Between Different Methods of Integration and TLM Modeling 
With and Without Compensation 

Percentage error for T = 0.1 

t Link modeling 
(set) Kutta-Simpson Euler Link modeling with compensation 

1.1 0.003981 -38.5 -8.3 -6.9 
2.1 0.035665 -12.8 -2.3 -1.4 

3.1 0.101499 0.0 -0.9 0.1 
4.1 0.160644 8.2 -0.3 0.3 
5.1 0.161516 13.1 0.3 0.2 

6.1 0.094384 11.1 1.3 -0.3 

7.1 0.002772 520.3 48.9 -21.8 
8.1 -0.054462 57.9 -1.2 0.5 
9.1 -0.051167 45.6 0.7 -0.7 

IX Sensitivity Evaluation 

One of the features of the TLM method is that simple calculation of exact 
sensitivities w.r.t. design variables is possible. Sensitivities are calculated 
iteratively in the same iteration process for calculating the impulse response. 
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TABLE III 

Component Values of the Filter Shown in Fig. 8 Before and After Compensation 

Component values in Ohms, Henries and Farads 

State R, Lz G L4 G Li R, 

No compensation 1.0 1.7058 1.2296 2.5408 1.2296 1.7058 1.0 

With compensation 1.0 1.7017 1.2247 2.5327 1.2247 1.7017 1.0 

First-Order Sensitivities 

Equation (11) or (20) describe the relationship between appropriate incident 
and reflected voltages for the whole network and the derivatives w.r.t. the K 

parameters of the whole network can be written as 

kVr 

akv 

ah 

akv 
84,. 

= 

-s 0 . . 

$S 
1 

. 0 . 

$0 
. * 

kVi’ 

akvi 

a+, 

akvi 

(23) 

The right-hand side vector is obtained from an equation of the form of (12) 
after differentiating it w.r.t. the jth parameter, viz., 

akvi 
-= c$ k_lvr, 
Wj I 

(24) 

where C is constant. 
It is clear that the matrix in (23) is very sparse since, for example, &,/a$j 

vanishes if S, does not contain the jth parameter. Although this matrix is 
sparse, the two vectors on the left and right hand sides are full and all the 
information has to be transferred in each iteration. So in calculating the 
sensitivities, we have to find the sensitivity of all the incident pulses w.r.t. all the 

parameters. The sensitivity of the impulse response will be the sensitivity of 
the stream of pulses at the output port w.r.t. the parameters. 

Consider a sub-network which simply connects two transmission lines having 
Z, and Z, as their characteristic impedances. The scattering matrix S, is given 

bY 

s,-L 
[ 

z,--z, 22, 

z,+z* 22, I z,--z, . 
(25) 
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Let 

Then 

The expressions 
sub-network. 

z1= 4ji, 5 = 4j+*. 

as,_ 22, -1 1 

[ I z&-(z,+z*)* -1 1 

asm _ 221 1 -1 

a++, [ I (z,+z,)* 1 -1 * 

(25)-(27) can be fitted into the scheme of (23) for this 

Second-Order Sensitivities 

Differentiating (11) or (20) w.r.t. the jth parameter, we get 

akv' as akvi -=__,vi+s_ 
Wj Wj Wj ’ 

(26) 

(27) 

(28) 

where akV'lacpi is found from (24). 
If we differentiate (24) and (28) w.r.t. 4, we get, respectively, 

(29) _ = c aLvi azkvi 
a4 Wj WI a4j 

a2kv a*s aZkvi --_=- 
84, Wj w, Wj 

,v’+-- 
as akvi I as akvi : s 

Wj wl a4 Wj w, Wj* 
(30) 

Equation (30) holds for sub-networks when subscript m is applied to both sides 
but some of the derivatives of S, are zero. 

Examples 

The symmetrical LC lowpass filter shown in Fig. 6(a) has been optimized in 
the time domain. Figure 9 shows a specified impulse response for L2 = L, = 1.0, 
C, = 2.0. Taking 100 sample points, using TLM analysis, least 4th approxima- 
tion yielded the solution in 21 s (24 function evaluations) and 17 s (19 function 
evaluations) from starting points a and b, respectively, with a maximum error 
of about 3 X 10e7. The specifications of Fig. 10 were met with a minimax error 
of 0.0021992 after 37 s (46 function evaluations) using 33 sample points for 
optimization. The starting point was L, = L4 = C, = 1.0 and the optimum point 
reached was L, = L., = 0.76645547 and C, = 2.3739403. The minimax solution 
was reached using third-order extrapolation, after a sequence of least pth 
optimizations where the values of p were 4, 16, 64, 256 and 1024. FLOPT2, a 
program described in (6), was used in these examples. The computer was a 
CDC 6400. 
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FIG. 9. Optimization using TLM analysis. Starting point a: LZ = L.,= 0.5, C, = 1.0. 
Starting point b: L2 = L4 = 0.8, C, = 2.2. 

FIG. 10. Optimization using TLM analysis. Starting point L2 = L, = C, = 1.0. Solution: 
L, = L4 = 0.76646, C, = 2.3739. 

V. Sensitivities with Respect to Time and T 

Differentiating (11) or (20) w.r.t. T we get 

akv’ as akvi -=--_,vi+s_ 
aT aT aT. (31) 
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Usually the scattering matrix S includes the parameters + which are functions 
of T as obtained from the modeling. 

The term aS/aT can be obtained from 

(32) 

Suppose c$~ is the characteristic impedance of a line modeling an inductor. If 
~j = L/T then 6VjlaT= - 4j/7’. For the capacitive case, qj/aT= c#I~/T. The 
second term on the right-hand side of (31) is obtained from (12), where 

++&V. (33) 

Note that the differentiation is at discrete time steps and the information is 
transferred iteratively with the original iteration scheme of the TLM method. 
Thus the above derivatives can only be obtained at points corresponding to 
fixed numbers of iterations k, i.e., at t = kT, where t is time. Let f(t, T), be an 
interpolation to the approximation of the impulse response obtained at discrete 
times t,, t2, t3, . . . by the TLM method, where 

where n is an integer. 

tj - tj_l = nT, (34) 

The parameter T is chosen arbitrarily, although it is known that the smaller 
the T the more accurate is the modeling. 

Suppose that the analysis is done twice with two different time steps T, and 
T,, respectively. In the first analysis we will get f(t, T,) at points, in general, 
time nT, apart, and in the second analysis f(t, T2) at points nT, apart. Figure 
I1 illustrates the situation. 

A first-order change in f(t, T) is given by 

f (i,T) 

t 

-t 
/ 

cti ,O) 

(t,,T)..........(t,_,,T) (t,,T) 

T 

FIG. 11. Representation of response with respect to t and T. 

(35) 
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TABLEIV 

(l/k) (af/aT)I, Obtained from the TLM Routine Versus 
aflat by Central Differences Where T = 0.1 

af 
t 1 af at Difference -- 

(set) kaT k (central differences) (%I 

0.5 0.13999 0.14638 4.56 
1.1 0.13649 0.13771 0.89 
1.7 0.05300 0.05315 0.28 
2.3 -0.03086 -0.03101 0.48 
2.9 -0.08180 -0.08206 1.54 
3.5 -0.09538 -0.09569 0.32 
4.1 -0.08170 -0.08202 0.39 
4.7 -0.05493 -0.05521 0.51 
5.3 -0.02705 -0.02727 0.81 
5.9 -0.00535 -0.00549 2.62 

where At and AT are changes in t and T, respectively. Thus, 

Sf =afAt ; af 
AT arAT aT’ 

(36) 

From the relation t = kT we have 

At= k AT (37) 

therefore, for a particular k 

= kLf+i!f 
at aT’ (38) 

The term aflaTlk is obtained from (31). 
Table IV shows, for the circuit of Fig. 6(a), where h(T) =zV;/2T, (l/k) 

(af/aT& versus aflat calculated by the central difference formula given in the 
appendix. There is a difference between the numbers in the two columns which 
we can attribute to (l/k) (af/aT) and the inexactness of calculating aflat. 
However, it is clear that this difference is very small. 

Table V compares the results obtained for aflaT/, obtained from the TLM 
routine, and the ones obtained by perturbing T to 0.101 and 0.099 from its 
initial value 0.1 (i.e., repeat the analysis with these new values of T), and using 
central differences. 

Two analyses were performed with two different time steps, namely, 0.1 and 
0.5/7, and af/dT at constant time was estimated by perturbation as AflAT. This 
AflAT was used to to the response. The 

= TLM f 
T Af 

extrapolated 
--- 

2 AT. (39) 
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TABLE V 

A Comparison Between af/aT For Constant k Obtained by TLM and Perturbation 

11 0.13581327 0.13281062 1.50132 1.50137 0.006 
41 0.04989793 0.05659663 -3.34935 -3.34976 0.019 
71 -0.01400295 -0.01576903 0.88304 0.88397 0.105 

101 0.00345630 0.00371329 -0.12850 -0.12911 0.474 
131 -0.00061299 -0.00057152 -0.02073 -0.02050 1.109 

Table VI compares the exact response obtained by the inverse Laplace 
transform and the extrapolated response. Table VII, on the other hand, 
compares the exact response and the extrapolated one, where af/eT was 
calculated using (38) for which aflat is calculated by the central difference 
formula given in the appendix. 

TABLE VI 

Using Af/A T to Predict Response for T = 0 

t f(t, T) 

(4 T= 0.1 T = 0.517 

0.5 0.04255324 0.04333199 -2.72562x lo-* 0.044141 0.043916 0.510 
1.5 0.17926209 0.17938925 -4.21435x lo-’ 0.179524 0.179473 0.028 
2.5 0.19006031 0.18991132 4.51465x lo-’ 0.189777 0.189815 0.020 
3.5 0.10754101 0.10727105 9.44860x lo-’ 0.106988 0.107069 0.076 
4.5 0.02373052 0.02339983 1.15742x lo-’ 0.023053 0.023152 0.429 

TABLE VII 

Using aflaT to Predict Response for T = 0 

t 
(se4 f eXBCf 

Difference 

f extrapolated (%I 

0.5 0.044141 0.044152 0.014 
1.1 0.134981 0.134992 0.008 
1.7 0.193099 0.193111 0.006 
2.3 0.198260 0.198272 0.006 
2.9 0.162173 0.162183 0.006 
3.5 0.106988 0.106994 0.006 
4.1 0.052558 0.052561 0.006 
4.7 0.011055 0.011054 0.009 
5.3 -0.013432 -0.013435 0.022 
5.9 -0.022686 -0.022690 0.017 
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VL Conclusions 

The TLM method is a new approach to the analysis of lumped networks. The 
distinct advantage of the TLM method is that the numerical procedure used 
solves the transmission-line model exactly. Errors arise only from how well the 
transmission-line model represents the actual circuit. To a certain limit the 
compensation of these errors by additional elements yielded more accurate 
results. 

Another advantage is that if the transmission-line network is physically 
stable, which is true in the case of passive linear networks, then the TLM 
solution will be stable. This means that stiff networks which give rise to 

instability in most methods do not cause instability in the TLM method. 
Different transmission-line models can be obtained for the same network, some 
of the models can be viewed as implicit methods and some as explicit. 

The simplicity of calculating the sensitivity of the impulse response with 
respect to design parameters makes the TLM method suitable for automated 
network design. Sensitivities with respect to time and time step can be easily 
obtained and it has been demonstrated how this information is used to improve 
accuracy. 

Possible developments in the method lie in improving the accuracy by using 
more complicated transmission-line elements and models and the investigation 
of limitations on modeling general sets of coupled ordinary differential equa- 
tions. 
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Appendix 

The formula used to obtain aflat from the response is (7) 

hfi’=(l*.-&&)h (Al) 
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where 

and 

(A3 

(A3) 

Equation (Al) can be rewritten as 

f;=$[f(t+h)-f(t-h)]-&[f(t+2h)-f(t-2h)] 

In the tables given h was equal to 2T. 

644) 
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