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SUMMARY

Based upon a uniform distribution inside an orthocell in the toleranced parameter space, it is shown how production
yield and yield sensitivities can oe evaluated for arbitrary statistical distributions. Formulae for yield and yield
sensitivities in the case of a uniform distribution of outcomes between the tolerance extremes are given. A general
formula for the yield, which is applicable to any arbitrary statistical distribution, is presented. An illustrative example
for verifying the formulae is given. Karafin’s bandpass filter has been used for applying the yield formula for a number
of different statistical distributions. Uniformly distributed parameters between tolerance extremes, uniformly dis-
tributed parameters with accurate components removed and normally distributed parameters were considered.
Comparisons with Monte Carlo analysis were made to contrast efficiency.

1. INTRODUCTION

Design centring and enlarging parameter tolerances, particularly for mass-produced designs such as
integrated circuits, is a requirement for cost reduction. It is this aim which emphasizes the problem of
yield estimation and makes it an integral part of the design process.

The yield problem has usually been treated through the Monte Carlo method of analysis. Elias'
presented an approach which applies the Monte Carlo analy51s directly to the nonlinear contraints. In an
effort to reduce computational time Director and Hachtel® suggested applying the Monte Carlo method in
con]unctlon with a polytope describing the constraint region. This polytope (a simplex being a special
case’) might be defined by quite a large number of hyperplanes For example, for a  space of k dimensions,
as described by the algorithm, this number may initially be 2*. Scott and Walker* suggested an efficient
technique using Monte Carlo analysis with space regionalization. However, the number of required
analyses increases exponentially with the number of variables in order to get the response at the centre of
each region. Regxonallzatlon was later used by Leung and Spence’ exploiting the technique of systematic
exploration. This technique is only applicable to linear circuits.

Karafin® used a different approach. The yield was estimated according to truncated Taylor series
approximations for the constraints. In the approach presented here we assume a reasonable nominal
point and reasonable linear approximations to the constraints. These will usually be available if a centring
or a worst-case tolerance assignment problem is solved first. The assumption of a reasonable nominal
point was also required by Karafin.

The approach is based upon partitioning the region under consideration into a collection of orthotopic
cells (orthocells). A weight is assigned to each orthocell and a uniform distribution is assumed inside it.
The weights are obtained from tabulated values for known distributions or obtained according to
sampling the components used. The freedom in choosing the sizes of the orthocells allows the use of
previous information about the problem. A formula for the yield is derived according to these assumptions
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and it is applicable to any statistical distribution, whether we have independent parameters or correlated
parameters with discrete or continuous tolerances.

An illustrative example was used to verify the yield and the yield sensitivity formulae for the uniform
case. A comparison with the Monte Carlo analysis method as applied to Karafin’s bandpass filter® is given
for the following statistical distributions:

(a) A uniform distribution of outcomes between tolerance extremes using different values for the

tolerances.

(b) A uniform distribution of outcomes between toleronce extremes, but with more accurate com-

ponents selected out.

(c) Parameters with normal distributions for different values of the standard deviation.

Since the uniform distribution is basic to the presentation, we solve the problem of a uniform
distribution first and generalize it for any distribution later.

2. YIELD WITH A UNIFORM DISTRIBUTION
The yield is simply defined by
YAN/M 1)

where N is the number of outcomes which satisfy the specifications and M is the total number of
outcomes.
Define the tolerance region R, by

Reé{¢|¢tp-8i$¢is¢io+gi, l::l, 2’---7k} (2)

where k is the number of designable parameters, ¢° is the nominal parameter vector and  is the vector of
absolute tolerances of the corresponding parameters.

Now, define the function V(R) as the hypervolume of the set R. Thus, for the case of independent
parameters and assuming a uniform distribution of outcomes between the tolerance extremes, (1) reduces
to

iR @
where
R&{dlg(d)=0, 1=1,2,...,m} (4)
is the constraint region defined by m linearized constraints
gd)=d"q-c, I1=1,2,....m ©)

Assuming no overlapping of nonfeasible regions defined by different constraints inside the orthotope R.,
ie.

R NR =9 (6)
i#j
where
R £{b|a(d)<O0INR. (7
the yield can be expressed as
=1 V(R
Y=1 —ZT(RS%——)- ®)

Define the set of all vertices of the orthotope R, by’
R, 2{blb=0¢0"+Ep, me{-1,1}i=1,2,...,k} ©
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where E is a k X kdiagonal matrix with &;,i =1, 2, .. ., k along the diagonal and using the following vertex
enumeration scheme:
k "+ .
r=14y Bitloim (10)
=1 2
Corresponding to each constraint g;(¢) =0, let us define a reference vertex
¢ =" +Ep (11)
where
®i = —sign (q,-’), i=1,2,...,k (12)

If gi(d")=0, then V(R,)=0. Otherwise we find the distance between the intersection of the hyperplane
g:($) =0 and the reference vertex ¢ along an edge of R, in the ith direction given by

ai=uig(d")/q!

r r 1 d r .
=#’i{¢i0+l~"i8i_?|:c,_—_zl qil(¢f0+ll’j8j)]}’ l=1a 27'-"k (13)
j=

i
=i

In order to derive an expression for V'=V(R,), consider the two-dimensional examples shown in
Figure 1. The nonfeasible area in Figure 1(a) is given by

V=A¢'ab—Ad*ac —A¢p'bd

o O C PO )

_1 (12281 _?_ﬁz)’]
—2a1a2[1 (1 al) (1 (4 %)

Also, in Figure 1(b), the nonfeasible area is given by
V =A¢’ab—Ad*ac — A 'bd +Ad*cd

2 2 2
=1a1a2[1_<1__2_§_1_) _<1__%fzz> +<1_.2_€_1_@> ]
2 a4 as agq as

A three-dimensional example is shown in Figure 2. In that example the linear constraint cuts the
orthotope at the polygon a b ¢ d e and the volume is given by

vl _1 (1&8_1)3_1 (1_&)3
6&1&2&3 6a1a2a3 a 6a1a2a3 P
3 2e,\3
_lalam(l_@) +1a1a2a3(1—ﬁ—i—2)
6 a3 6 a;  aj
Hence, the general formula can be written as
1 d vs K
vR)={5 el £ -1 ] (14
k!j=1 seSi
where
s d Ej s r
8i=1-Y <hlu;—ujl (15)
j=1Qj
S 2 {slg(d’)<0, &=’ +Ep’, uie{-1,1}, i=1,2,...,k} (16)
k
vi= 3 |ui—wil/2 (17)
i=1
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Figure 1. Two-dimensional examples illustrating the calculation of the nonfeasible hypervolumes, (a) Tolerance region partially
feasible, (b) Tolerance region nonfeasible

An illustration of (14) for the case of k =3 is shown in Figure 2. Since

k
V(R.)=2"T] ¢ (18)
j=1
the yield sensitivities can be expressed as
V(R. 19
=L s VR, 19)
Y (1 =m m gV*
S22 v-Fi0) virg 20)
€ \&il=1 =10
We take
av'! aVv!

W—a—si:O if gi(db")=0
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Figure 2. Three-dimensional example illustrating the calculation of nonfeasible hypervolumes in the case of a partially feasible
tolerance region

otherwise
avl q;l k I_-‘/é k vs k—1 l"’] Ej r
o {k,pzl[ I ]}“B{’“"E} 1) (61) <,§ ot e uil)] (21)
j#p
V! v vs/asrk—1
T {Nezllu, w16} (22)
where
A= Zs (= 1) (&))" (23)
_1 .k
_Egla,. (24)

It is to be noted that the yield sensitivities are discontinuous whenever a vertex ¢° satisfies the equation
gi(®*)=0 for any /=1,2,...,m. Also for the case of having a; >0 there exists a limit for the
hypervolume formula and its sensitivities.

For an alternative way of calculating V(R,;) we define a complementary vertex

¢ =¢"+Ep (25)
where
pi=—pi=sign(q) i=1,2,...,k (26)
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If g(d")=<0, then V(R)=V(R,). Otherwise we find the distance between the intersection of the
hyperplane g(d) =0 and the complementary vertex ¢” along an edge of R, in the ith direction given by

al=wg@)/al, i=12....k @7)

Hence we find the following equations:

k 1 k I
vi=VR)=2" Tl e~ { 5 T & L (-17 6D (28)
j=1 -j=1 seSi
where
S d Ei s F
1=1- Y =il —ujl (29)
j=1¢;
Si2{s|lg(®)>0, &' =¢’+Ep’, puie{-1,1},i=1,2,...,k} (30)
k -
5= 1 |ui-ull/2 (31)
Equations (19) and (20) remain as before.
We take
E\% av'! k ) .
m=0 and 3;=2ij=11 g ifg(d)<O0
o
otherwise
ovV'_ (ai k [u; K ,]} -
=iy |2 A
a? {k!p=1 P
j#p
>3 vs r Ss\k— k ; Ej s Fl
~Blka! 5 (-7 @0 £ 4 olui—udl)] 62)
ses; i=1q; (&;
av! k oV (k . s 5o ) ookt
—=2" I1 51""#:'_0"‘3{?1 Z_ l#i“#il(_l) (61)k 1} (33)
J€; ji=1 a¢i Qa;seS;
j#i
where
A= Zg(—l)“(gf)" (34)
1 ko,
B = H aj (35)
k!j=1

In order to obtain the hypervolume and its sensitivities efficiently we use the following criteria:
(i) If g(¢")=0, use reference vertex approach.
(ii) If g/(d") =<0, use complementary vertex approach.
(iii) If g (") <0 and g(d")>0, then
if [g(d")|<|g:(d")|, use reference vertex approach,
if |g/(d")|>|gi(d")|, use complementary vertex approach.
The cases (i) and (ii) are clear since the tolerance orthotope will be either completely feasible or
completely nonfeasible, respectively. Case (iii) follows from the theorem in the Appendix.
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Example 1

Consider the following four-dimensional example, with a linear constraint

_G1 b2 b3 bs
(¢)_24+15+60+240 1=0

and where
9 5
7 2
0: —3
=l 9| 7|4
26 6
Hence
91 [5 0 0 0|[-1 4
& = 7 + 0 2 0 0]]|—-1 5
9 0 0 4 0]|—-1 5
26 0 0 0 64|—-1 20
and
1 4\4 8\ 12\4 4 12\+ 8 12\4
v [qesraonsll (-8 o) (R BB
{4!85208()][115 120 180—i_1580+12080
=1034-15.

Table I shows the nonfeasible vertices. A check for the analytical formulae for the gradients and the
numerical gradients obtained by central differences is shown in Table II.

Table 1. Nonfeasible vertices for Example 1

Nonfeasible
Vertex o b2 b3 b4 M1 M2 M3 Ma vertices
1 4 5 5 20 -1 -1 -1 -1 X
2 14 5 5 20 1 -1 -1 -1
3 4 9 5 20 -1 1 -1 -1 X
4 14 9 5 20 1 1 -1 -1
5 4 5 13 20 -1 -1 1 -1 X
6 14 5 13 20 1 -1 1 -1
7 4 9 13 20 -1 1 1 -1
8 14 9 13 20 1 1 1 -1
9 4 5 5 32 -1 -1 -1 1
10 14 5 5 32 1 -1 -1 1
11 4 9 5 32 -1 1 -1 1
12 14 9 5 32 1 1 -1 1
13 4 5 13 32 -1 -1 1 1
14 14 5 13 32 1 -1 1 1
15 4 9 13 32 -1 1 1 1
16 14 9 13 32 1 1 1 1

97 [5 o olfo 1] [14
¢,.=7+02001=9
9710 0 4|0 1| |13
26] 0 0 olle 1] |32
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Table II. Hypervolume gradient check for Example 1

Analytical Numerical

Parameters gradients gradients
b7 —337-50 —337-50

b3 —540-00 —540-00

b3 —135.00 —135-00

i -33-75 -33.75

€1 337-50 337-50

£z 573-60 573-60

€3 268-20 268-20

€4 173-18 173-18

and

V=24><5><2><4x6—[%(8x1-6)(5><1-6)(20><1-6)(80><1-6)]
10 \# 4 4 8 4 4 8 4
. — —— — pu— — p— + pa— —
[1 (1 8><1~6) (1 5><1-6) (1 20><1-6> (1 5%1-6 20><1-6)

_<1_ 12 )4+(1_ 0 12 )4+(1~ 4 12 )4
80x1-6 8x1-6 80x1-6 5x1:6 80x1-6

+(1_ 8§ 12 )4_(1_ 4 8 12 )4]
20%1:6 80x1-6 5x1-6 20X1-6 80X16
=3840—2805-85=1034-15.

3. YIELD WITH STATISTICAL DISTRIBUTIONS

The probability distribution function (PDF) might extend as far as (—00, 00); however, for all practical
cases we consider a tolerance region R, such that

L F(b)de,ded,...de=1 (36)

where F(¢) is the PDF.

The orthotope R, is now partitioned into a set of orthocells R(is, i, ..., i) as in Figure 3, where
i;=1,2,...,n; n; is the number of intervals in the jth direction and j=1, 2, ..., k. A weighting factor
Wiy, ia, . . ., ix) is assigned to each orthocell and is given by

W(ila i27 L) lk): w(ib i27 D) lk)/V(R(lb i2’ ceey lk)) (37)
where
Wi i) = | F(é) do (38)
R(i1,i2,...,ik)

k
VR bz, i) = | do =11 & (39)

R (i1,i2,...,ik) j=1
dv= d¢1 d¢2 [P d¢k (40)

and €1, £2.i5, - - - » Ek,ix are the dimensions of the orthocell.
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Figure 3. Two-dimensional illustration of the partitioning of the tolerance region into cells indicating the dimensions and weighting
of those cells relevant to the calculation of the weighted nonfeasible hypervolume

In principle, the problem of finding the yield is now reduced to finding the contribution to the yield
given by any of these orthocells. However, it will be a tedious job to consider

k
[T n; orthocells.
j=1

By exploiting the way (14) is constructed, a formula for the weighted nonfeasible hypervolume with
respect to the /th constraint is constructed and is given by

1 k ny+1 ny+1 ne+1
Vlz[F 'l_[l a}'l:”:_zl _Zl 'Zl AW(lla i2"'~,ik)(6l(ilyi27--"ik))k] (41)
j= i1=1 iz2= k=

where, for indexing with respect to & (see Figure 3), aj' = the distance from the reference vertex to the
point of intersection in the jth direction,

k1 &

61(i1,i2,...,ik)=max [O,(l— Z i Z £j,p_1)] (42)
j=1Q&jp=1

£0=0, j=1,2,....k (43)

k

AW(il, i2,...,ik)=W(i1, iz,...,ik)— Z W(il, iz,...,ij_l, ij“l, ij+1,...,ik)
j=1

j=

k—1 k
+ 2 Y Wlnis...,i—=1,...,0=1,...0)— "

j=1p=j+1
+(=D)*W(@i1—1,i—1,...,0ik—1) (44)
Wiy, i ...,0ik)=0 if =0 or i=n;+1foranyj. (45)

For the case of independent parameters (41) can be written as

vie[G e[ T awi) T AW T AWAGIGG s - i) ] (46)

1= 2= k=
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where
AW; (i) = W;(i;) — W, — 1) (47)
W;(0) = Wj(n;+1)=0 (48)
W, (@) = J fi))déi/e,  5=1,2,....m (49)
Rj(ij)

fi(¢;) is the PDF of the jth parameter and R;(j;) is the ith interval for that parameter. Table III illustrates
the calculation of weighted hypervolume.

Table III. Example of calculation of weighted hypervolume by the general formula

Orthocell i 0 1 2 3 4
dimensions €1 0 3-0 3-0 2-0 —
iz €2,i
0 0 w, W 0 0 0 0 0
w 0 18/100 12/100 3/10 0
1 2:0 w 0 3/100 1/50 3/40 0
AW — 3/100 —-1/100 11/200 —3/40
S — 1 3/4 1/2 1/3
w 0 12/100 8/100 2/10 0
2 3.0 w 0 1/75 2/225 1/30 0
AW — -1/60 1/180 —11/360 1/24
) — 1/3 1/12 0 0
w, W 0 0 0 0 0
3 — AW — -1/75 1/225 —-11/450 1/30
) — 0 0 0 0

Reference vertex ¢’ given by w1 =—1, uz=1.
Intersections of the linear constraint are a; =12, a; = 3.
Weighted volume V = 1813/3600.

Again, assuming nonoverlapping, nonfeasible regions defined by different constraints inside the ortho-
tope R., the yield can be expressed as
y=1-% V' (50)
=1
In short, the method approximates the integration of the PDF over the feasible region. It allows
freedom in discretizing the PDF which is an advantage particularly if a worst-case solution is already
known.

Example 2

The bandpass filter,* shown in Figure 4, was used for verification of the yield formula. The specifica-
tions are shown in Table IV. All inductors have the same Q at the nominal value given in Reference 8 as
the corresponding inductors in Reference 6. The results given in Reference 8 as indicated by the authors
violate the specifications at unconsidered frequency points. The adjoint network technique was used for
evaluating the sensitivities and, hence, linearizing the constraints at these frequency points. The
linearization was done at the worst violating vertex, i.e. the vertex which gives the most negative value for
that particular constraint. The yields obtained by the present approach and applying the Monte Carlo
method with the nonlinear constraints for a uniform distribution are shown in Table V. Further, as the
tolerances were increased more frequency points were considered. In order to avoid overlapping
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Figure 4. Karafin’s bandpass filter. The values of the resistances are related to nominal values of the corresponding inductances by
the same ratio used by Karafin (Reference 6, p. 112)

constraints, for each nonfeasible vertex the frequency point corresponding to the worst violated con-
straint is considered.

In addition, a uniform distribution of outcomes was considered but with the more accurate components
removed. This gives w;(1) = w;(3) =0-5 and w;(2) =0. The problem is equivalent to having 28 different
orthotopes. The results are shown in Table VI.

Consider now the case of a normal distribution which has a probability distribution function’

. 1 1 1 0T ~1/4 4.0
F(‘b):WWCXP[‘E(d’_d)) (COV) (d—d))]

where

k is the number of parameters,
¢° is the mean value of the parameter vector &,
COV s the covariance matrix.

In the case of no correlation, COV is a diagonal matrix with variances o7, i=1,2,...,k, along the
diagonal. Hence,

F(d)= 2 )k/zl-[1 exp[ g (T;,_zﬂ

Table IV. Specifications for the bandpass filter

Frequency range (Hz) Relative insertion loss (dB) Type
0-240 35 lower (stopband)
360-490 3 upper (passband)
700-1000 35 lower (stopband)

Reference frequency 420 Hz (fixed, therefore, ripples higher than 3 dB are to be expected in the
passband).

Nominal values L1 =3-0142, C;=4-975x10"°, L3=2:902, CQ=5-0729%x10"%, L$=0-82836,
C2=5-5531x10"", L9=0-30319 and C5 =1-6377x 10"’
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Table VI. Comparison with the Monte Carlo analysis for accurate components

removed
¢:i— ¢ Yield (%) CDC Time (sec)
=i (o)
i Approx. M.C. Approx. M.C.
[-10, —5],[5, 10] 68-9 71-0 4-9 45-6

Frequency points used are 190, 240, 360, 480, 490, 700 and 860 Hz.

Using the described approach and dividing the interval [¢,~0 20, d),-o +20;] for each parameter into three
different subintervals the weights are obtained in the following manner. Let '

1 $9-20,/3 r d) _¢0 2
1,-=7———j —(;>]d ,=0-2298
Qm)oi Jpo-20, expL 20 ¢ ?
1 I“"-’”"*” I (¢1—¢?)2]
I, = — doé; =0:4950
2 V™) 502003 Pl 20; ¢ ?
1 #9+20, r ¢__¢Q 2
I= J —(————) ]d . =0-2298
*TICme Jstizes ST L 20; ¢

Considering a probability of unity for finding ¢; in the interval [¢; — 20, ¢; +20;], the weights for each
interval are given by (see Figure 5)

Wi1= W3 =02298/(Il +12+I3)
Wy = 04950/(I1+Iz+l3)

4 - normal distribution

\ (truncoted normal distribution

- S

l

O e O " O ——~f——— 0 ——

®;

Figure 5. Normal distribution, truncated normal distribution and discretized normal distribution
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The results are shown in Table VII for equal standard deviations for all of the eight parameters and for

two values, namely, 5 per cent and 6 per cent. Table VIII shows the execution time if Monte Carlo
analysis is applied to the linear constraints for the case of normally distributed parameters.

Table VII. Comparison with Monte Carlo analysis for normally distributed

components
i o) Yield (%) CDC Time (sec)
&0
' Approx. M.C. Approx. M.C.
5-0 96-5 95-1 4-9 69-2
6-0 88-4 87-0 7-4 68-0

Table VIII. Effect of number of Monte Carlo analyses on the yield
based upon the linearized constraints

g%(%) N.O.M.P.* Yield (%)  CDC Time (sec)
2000 94-4 24-6
5-0 500 94.2 7-0
200 91-5 28
2000 866 24-3
6-0 500 852 6-9
200 84-0 28

* N.O.M.P. denotes the number of Monte Carlo points used.

CONCLUSIONS

It has been shown how yield may be estimated for arbitrary statistical distributions in an efficient way
without recourse to the Monte Carlo method. Examples involving a number of distributions have been
presented and the results contrasted with those given by the Monte Carlo method.

For the case of a uniform distribution between tolerance extremes yield sensitivity formulae have been
derived with respect to nominal parameter values and tolerances assuming independent variables. These
can be useful in optimization.""'? Since the uniform distribution is basic to the subsequent consideration
of arbitrary distributions, it is felt that the ideas on sensitivity could be carried through to effect design
centring with respect to given distributions.

As usual in iterative schemes, the choice of starting point may be important. In the present work it is
recommended that a rough solution to a worst-case centring and tolerance assignment problem be used to
provide and identify suitable active constraints. This allows only essential constraints to be considered and
provides some justification for a worst-case solution even if less than 100 per cent yield is subsequently
contemplated.'"'?

APPENDIX
Theorem

If g($")<0, g(d")>0 and |g/(d")|<|gi(¢"), then
Order (S;) < Order (S)).



YIELD ESTIMATION FOR DESIGN CENTRING 303

Proof. In the case under consideration the order of a set is simply the number of its elements. Assume
that s € S;, then

&(d°) = gi(d") +(d° - d") Va(d') <0

=g(Pp)+ .; &i(ui—pigi<0

or
ad 1
—g(d)+ _;1 &i(—pi+upi)gi>0
But, since
—g(d)<g(d’) and pi=—u/
then
- k - l
8:(¢')+.§1 ei(—pi—pi)gi>0
i.e.
g($°)>0
where
¢§ — d)O_EMs
Hence
€S,

This means that for each vertex s € S there exists a vertex § e S; thus

Order (S;) < Order (S)).
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